論文の概要: Unsupervised Analysis of Alzheimer's Disease Signatures using 3D Deformable Autoencoders
- arxiv url: http://arxiv.org/abs/2407.03863v1
- Date: Thu, 4 Jul 2024 11:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:12:58.456555
- Title: Unsupervised Analysis of Alzheimer's Disease Signatures using 3D Deformable Autoencoders
- Title(参考訳): 3次元変形型オートエンコーダを用いたアルツハイマー病信号の教師なし解析
- Authors: Mehmet Yigit Avci, Emily Chan, Veronika Zimmer, Daniel Rueckert, Benedikt Wiestler, Julia A. Schnabel, Cosmin I. Bercea,
- Abstract要約: MORPHADEは3次元T1重み付き脳画像の解析に変形を利用する新しい教師なし学習手法である。
これは、深い教師なし学習による変形を初めて検出し、またアルツハイマー病(AD)による脳の構造変化の重症度を局所化し評価する。
提案手法は,AD検出において0.80のAUROCを達成し,教師なしベースラインや教師なしベースラインよりも優れていた。
- 参考スコア(独自算出の注目度): 10.091922917520316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing incidence of neurodegenerative diseases such as Alzheimer's Disease (AD), there is a need for further research that enhances detection and monitoring of the diseases. We present MORPHADE (Morphological Autoencoders for Alzheimer's Disease Detection), a novel unsupervised learning approach which uses deformations to allow the analysis of 3D T1-weighted brain images. To the best of our knowledge, this is the first use of deformations with deep unsupervised learning to not only detect, but also localize and assess the severity of structural changes in the brain due to AD. We obtain markedly higher anomaly scores in clinically important areas of the brain in subjects with AD compared to healthy controls, showcasing that our method is able to effectively locate AD-related atrophy. We additionally observe a visual correlation between the severity of atrophy highlighted in our anomaly maps and medial temporal lobe atrophy scores evaluated by a clinical expert. Finally, our method achieves an AUROC of 0.80 in detecting AD, out-performing several supervised and unsupervised baselines. We believe our framework shows promise as a tool towards improved understanding, monitoring and detection of AD. To support further research and application, we have made our code publicly available at github.com/ci-ber/MORPHADE.
- Abstract(参考訳): アルツハイマー病(AD)のような神経変性疾患の発生が増加する中、疾患の検出とモニタリングを強化するさらなる研究が必要である。
MORPHADE (Morphological Autoencoders for Alzheimer's Disease Detection, MORPHADE) は3次元T1重み付き脳画像の解析に変形を用いた教師なし学習手法である。
私たちの知る限りでは、ADによる脳の構造変化の重症度の検出と評価を、教師なしの深い学習で行うのはこれが初めてです。
健常者では,AD関連萎縮を効果的に検出できる可能性が示唆された。
また, 異常マップで強調された萎縮の重症度と, 臨床専門家が評価した側頭葉萎縮の経時的評価との間には, 視覚的相関が認められた。
最後に,AD検出において約0.80のAUROCを達成し,教師付きベースラインや教師なしベースラインよりも優れていた。
当社のフレームワークは,ADの理解,監視,検出を改善するためのツールとして,将来性を示しています。
さらなる研究と応用を支援するため、github.com/ci-ber/MORPHADEでコードを公開しました。
関連論文リスト
- AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [45.630166504856255]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
アルツハイマー病(英語: Alzheimer's disease、AD)は認知能力の低下が進行する認知症である。
本研究では, 構造的, 機能的MRIを用いて, 病原性灰白質と機能的ネットワーク接続性の変化について検討した。
本稿では,Cycle GANsを用いた生成モジュールを,潜伏空間内の欠落データをインプットするために採用した,新しいディープラーニングに基づく分類フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-19T07:31:47Z) - Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images [0.8192907805418583]
本研究は、アルツハイマー病を制御正常(CN)、進行性軽度認知障害(pMCI)、安定性軽度認知障害(sMCI)、アルツハイマー病(AD)の4つのグループに分類する難しい課題について考察する。
いくつかのディープラーニングモデルと伝統的な機械学習モデルがアルツハイマー病の検出に使われている。
その結果、深層学習モデルを用いてMCI患者間の差異を判断すると、全体の平均精度は93.13%、AUCは94.4%となることがわかった。
論文 参考訳(メタデータ) (2024-03-17T16:12:50Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
ディープラーニングを用いた脳MRIにおける教師なし異常検出(UAD)は有望な結果を示した。
年齢情報を考慮した3次元脳MRIにおけるUDAの深層学習を提案する。
そこで本研究では,マルチタスク年齢予測を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T09:39:52Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNetはアルツハイマー病(AD)を診断するためのマルチグリッドと畳み込みニューラルネットワークの統合フレームワークである
このモデルはADとNCの分類で92.133%の精度を達成し、モデルのパラメータを大幅に削減した。
論文 参考訳(メタデータ) (2022-01-12T09:08:08Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
アルツハイマー病(Alzheimer's disease、AD)は、脳細胞を破壊し、患者の記憶に損失を引き起こす進行性および不治性の神経変性疾患である。
本稿では,不均衡な3次元MRIデータセットを用いた2次元深部畳み込みニューラルネットワーク(2D-DCNN)によるADの診断手法を提案する。
このモデルはMRIをAD、軽度認知障害、正常制御の3つのカテゴリに分類し、99.89%の分類精度を不均衡クラスで達成した。
論文 参考訳(メタデータ) (2021-01-08T06:51:08Z) - Improving 3D convolutional neural network comprehensibility via
interactive visualization of relevance maps: Evaluation in Alzheimer's
disease [0.8031935951075242]
畳み込みニューラルネットワーク(CNN)は、磁気共鳴イメージング(MRI)スキャンに基づいてアルツハイマー病(AD)認知症を検出する高い診断精度を実現します。
この理由の1つは、モデル理解性の欠如である。
より精度の高いモデルは、事前知識によって事前に定義された差別的脳領域にも依存するかどうかを検討した。
論文 参考訳(メタデータ) (2020-12-18T15:16:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。