RobQuNNs: A Methodology for Robust Quanvolutional Neural Networks against Adversarial Attacks
- URL: http://arxiv.org/abs/2407.03875v1
- Date: Thu, 4 Jul 2024 12:13:52 GMT
- Title: RobQuNNs: A Methodology for Robust Quanvolutional Neural Networks against Adversarial Attacks
- Authors: Walid El Maouaki, Alberto Marchisio, Taoufik Said, Muhammad Shafique, Mohamed Bennai,
- Abstract summary: Quanvolutional Neural Networks (QuNNs) integrate quantum and classical layers.
This study introduces RobQuNN, a new methodology to enhance the robustness of QuNNs against adversarial attacks.
The findings reveal that QuNNs exhibit up to 60% higher robustness compared to classical networks for the MNIST dataset.
- Score: 3.9554540293311864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in quantum computing have led to the emergence of hybrid quantum neural networks, such as Quanvolutional Neural Networks (QuNNs), which integrate quantum and classical layers. While the susceptibility of classical neural networks to adversarial attacks is well-documented, the impact on QuNNs remains less understood. This study introduces RobQuNN, a new methodology to enhance the robustness of QuNNs against adversarial attacks, utilizing quantum circuit expressibility and entanglement capability alongside different adversarial strategies. Additionally, the study investigates the transferability of adversarial examples between classical and quantum models using RobQuNN, enhancing our understanding of cross-model vulnerabilities and pointing to new directions in quantum cybersecurity. The findings reveal that QuNNs exhibit up to 60\% higher robustness compared to classical networks for the MNIST dataset, particularly at low levels of perturbation. This underscores the potential of quantum approaches in improving security defenses. In addition, RobQuNN revealed that QuNN does not exhibit enhanced resistance or susceptibility to cross-model adversarial examples regardless of the quantum circuit architecture.
Related papers
- Designing Robust Quantum Neural Networks: Exploring Expressibility, Entanglement, and Control Rotation Gate Selection for Enhanced Quantum Models [3.9554540293311864]
This study investigates the robustness of Quanvolutional Neural Networks (QuNNs) in comparison to their classical counterparts.
We develop a novel methodology that utilizes three quantum circuit metrics: expressibility, entanglement capability, and controlled rotation gate selection.
Our results demonstrate that QuNNs exhibit up to 60% greater robustness on the MNIST dataset and 40% on the Fashion-MNIST dataset compared to CNNs.
arXiv Detail & Related papers (2024-11-03T21:18:07Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - AdvQuNN: A Methodology for Analyzing the Adversarial Robustness of Quanvolutional Neural Networks [3.9554540293311864]
This study aims to rigorously assess the influence of quantum circuit architecture on the resilience of QuNN models.
Our results show that, compared to classical convolutional networks, QuNNs achieve up to 60% higher robustness for the MNIST and 40% for FMNIST datasets.
arXiv Detail & Related papers (2024-03-07T12:30:40Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities.
In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework.
We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time.
arXiv Detail & Related papers (2024-02-16T11:44:25Z) - Benchmarking Adversarially Robust Quantum Machine Learning at Scale [20.76790069530767]
We benchmark the robustness of quantum ML networks at scale by performing rigorous training for both simple and complex image datasets.
Our results show that QVCs offer a notably enhanced robustness against classical adversarial attacks.
By combining quantum and classical network outcomes, we propose a novel adversarial attack detection technology.
arXiv Detail & Related papers (2022-11-23T03:26:16Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks.
In this paper, we investigate the impact of network width and depth on the robustness of adversarially trained DNNs.
arXiv Detail & Related papers (2021-10-07T23:13:33Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.