論文の概要: Oracle Bone Inscriptions Multi-modal Dataset
- arxiv url: http://arxiv.org/abs/2407.03900v1
- Date: Thu, 4 Jul 2024 12:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:03:13.838346
- Title: Oracle Bone Inscriptions Multi-modal Dataset
- Title(参考訳): Oracle Boneがマルチモーダルデータセットを記載
- Authors: Bang Li, Donghao Luo, Yujie Liang, Jing Yang, Zengmao Ding, Xu Peng, Boyuan Jiang, Shengwei Han, Dan Sui, Peichao Qin, Pian Wu, Chaoyang Wang, Yun Qi, Taisong Jin, Chengjie Wang, Xiaoming Huang, Zhan Shu, Rongrong Ji, Yongge Liu, Yunsheng Wu,
- Abstract要約: オラクルの骨碑文(Oracle bone inscriptions, OBI)は中国最古の書記体系であり、初期の上海の歴史や古史の貴重な実例を記している。
本稿では,10,077個のオラクル骨の注釈情報を含むOracle Bone Inscriptions Multi-modalデータセットを提案する。
このデータセットは、OBIの文字検出と認識、ラビングDenoising、キャラクタマッチング、キャラクタ生成、読み込みシーケンス予測、ミスキャラクタ補完タスクなど、OBIの分野に関連するさまざまなAI関連研究タスクに使用することができる。
- 参考スコア(独自算出の注目度): 58.20314888996118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oracle bone inscriptions(OBI) is the earliest developed writing system in China, bearing invaluable written exemplifications of early Shang history and paleography. However, the task of deciphering OBI, in the current climate of the scholarship, can prove extremely challenging. Out of the 4,500 oracle bone characters excavated, only a third have been successfully identified. Therefore, leveraging the advantages of advanced AI technology to assist in the decipherment of OBI is a highly essential research topic. However, fully utilizing AI's capabilities in these matters is reliant on having a comprehensive and high-quality annotated OBI dataset at hand whereas most existing datasets are only annotated in just a single or a few dimensions, limiting the value of their potential application. For instance, the Oracle-MNIST dataset only offers 30k images classified into 10 categories. Therefore, this paper proposes an Oracle Bone Inscriptions Multi-modal Dataset(OBIMD), which includes annotation information for 10,077 pieces of oracle bones. Each piece has two modalities: pixel-level aligned rubbings and facsimiles. The dataset annotates the detection boxes, character categories, transcriptions, corresponding inscription groups, and reading sequences in the groups of each oracle bone character, providing a comprehensive and high-quality level of annotations. This dataset can be used for a variety of AI-related research tasks relevant to the field of OBI, such as OBI Character Detection and Recognition, Rubbing Denoising, Character Matching, Character Generation, Reading Sequence Prediction, Missing Characters Completion task and so on. We believe that the creation and publication of a dataset like this will help significantly advance the application of AI algorithms in the field of OBI research.
- Abstract(参考訳): オラクルの骨碑文(Oracle bone inscriptions, OBI)は中国最古の書記体系であり、初期の上海の歴史や古史の貴重な実例を記している。
しかし、奨学金の現在の気候におけるOBI解読の課題は極めて困難である。
発掘された4,500個のオラクルの骨の文字のうち、わずか3分の1しか発見されていない。
したがって、高度なAI技術の利点を活用してOBIの解読を支援することが極めて重要な研究課題である。
しかし、これらの問題でAIの能力を十分に活用することは、包括的な高品質なOBIデータセットを手元に持つことに頼っている一方、既存のデータセットの多くは、たった1つまたは数次元でアノテートされているだけで、潜在的なアプリケーションの価値を制限している。
例えば、Oracle-MNISTデータセットは10のカテゴリに分類される30万のイメージしか提供していない。
そこで本研究では,Oracle Bone Inscriptions Multi-modal Dataset (OBIMD)を提案する。
各ピースにはピクセルレベルのアライメントラビングとファクシミリの2つのモードがある。
データセットは、検出ボックス、文字カテゴリ、転写、対応するインプリンティンググループ、および各オラクルの骨キャラクタのグループにおける読み込みシーケンスを注釈し、包括的な高品質のアノテーションを提供する。
このデータセットは、OBIの文字検出と認識、ラビングDenoising、キャラクタマッチング、キャラクタ生成、読み込みシーケンス予測、ミスキャラクタ補完タスクなど、OBIの分野に関連するさまざまなAI関連研究タスクに使用することができる。
このようなデータセットの作成と公開は、OBI研究の分野におけるAIアルゴリズムの適用を大幅に前進させるだろうと考えています。
関連論文リスト
- A Cross-Font Image Retrieval Network for Recognizing Undeciphered Oracle Bone Inscriptions [12.664292922995532]
Oracle Bone Inscription (OBI) は中国で最も初期の成熟した書記システムである。
OBI文字を解読するクロスファント画像検索ネットワーク(CFIRN)を提案する。
論文 参考訳(メタデータ) (2024-09-10T10:04:58Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
本研究では、現在のAIモデルがマルチモーダルな構造化データに基づいて知識を考慮した推論を行うことができるかどうかを検討する。
この目的のために設計された新しいデータセットであるMMTabQAを紹介する。
我々の実験は、複数のテキストと画像の入力を効果的に統合し解釈する上で、現在のAIモデルに対する重大な課題を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-08-25T15:17:43Z) - An open dataset for oracle bone script recognition and decipherment [66.35957530824872]
古代中国最古の書体の一つ、Oracleの骨書は、3000年前にさかのぼる上海王朝の人文・地理を研究する学者にとって、貴重な研究資料を提示している。
時間の経過はそれらの意味の多くを曖昧にしており、これらの古代のテキストを解読する上で重要な課題が提示されている。
人工知能(AI)の出現により、Oracle Bone Characters(OBC)の解読を支援するAIが実現可能な選択肢となっている。
このデータセットは1,588個の解読文字の77,064個の画像と9,411個の未解読文字の62,989個の画像を含む。
論文 参考訳(メタデータ) (2024-01-27T09:54:16Z) - A Hierarchical Approach to exploiting Multiple Datasets from TalkBank [0.0]
本稿では、階層的な探索手法を用いて、効率的な複雑なデータ選択を可能にするパイプラインフレームワークを提案する。
このフレームワークは、他のオープンサイエンスプラットフォームからのデータ処理にも適用できる。
論文 参考訳(メタデータ) (2023-06-21T22:37:51Z) - MMSum: A Dataset for Multimodal Summarization and Thumbnail Generation
of Videos [106.06278332186106]
マルチモーダル・アウトプット(MSMO)を用いたマルチモーダル・サマリゼーションが有望な研究方向として浮上している。
既存のパブリックMSMOデータセットには多くの制限がある。
textbfMMSumデータセットを精巧にキュレートした。
論文 参考訳(メタデータ) (2023-06-07T07:43:11Z) - Adapting Knowledge for Few-shot Table-to-Text Generation [35.59842534346997]
AKG(Adapt-Knowledge-to-Generate)という新しいフレームワークを提案する。
AKGはラベルのないドメイン固有の知識をモデルに適応させ、少なくとも3つの利点をもたらす。
本モデルでは,人間の評価と自動評価により,流速,精度の両面において優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-24T05:48:53Z) - Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge
Memorization [41.20314472839442]
数ショット設定でテーブル・ツー・テキスト生成をターゲットとするPromptMizeという新しいフレームワークを提案する。
私たちのフレームワークの設計は、プロンプトプランナーと知識アダプタの2つの側面で構成されています。
本モデルは,人的・自動的な評価によって判断される品質を著しく向上させる。
論文 参考訳(メタデータ) (2023-02-09T03:04:11Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - Towards Robust Visual Information Extraction in Real World: New Dataset
and Novel Solution [30.438041837029875]
実世界のシナリオに向けた堅牢な視覚情報抽出システム(VIES)を提案する。
VIESは、同時テキスト検出、認識、情報抽出のための統一されたエンドツーエンドのトレーニング可能なフレームワークです。
テキストスポッティングと視覚情報抽出の両方の中国初のベンチマークであるephoieと呼ばれる完全注釈付きデータセットを構築した。
論文 参考訳(メタデータ) (2021-01-24T11:05:24Z) - A Study on Efficiency, Accuracy and Document Structure for Answer
Sentence Selection [112.0514737686492]
本稿では,単語関連エンコーダとともに,原語階の内在的構造を活用すれば,競争的な結果が得られることを論じる。
私たちのモデルはWikiQAデータセットでトレーニングするのに9.5秒かかります。
論文 参考訳(メタデータ) (2020-03-04T22:12:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。