論文の概要: Generalizing Graph Transformers Across Diverse Graphs and Tasks via Pre-Training on Industrial-Scale Data
- arxiv url: http://arxiv.org/abs/2407.03953v1
- Date: Thu, 4 Jul 2024 14:14:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:43:28.633760
- Title: Generalizing Graph Transformers Across Diverse Graphs and Tasks via Pre-Training on Industrial-Scale Data
- Title(参考訳): 産業規模データの事前学習による各種グラフ・タスク間のグラフ変換器の一般化
- Authors: Yufei He, Zhenyu Hou, Yukuo Cen, Feng He, Xu Cheng, Bryan Hooi,
- Abstract要約: PGT(Pre-trained Graph Transformer)と呼ばれるスケーラブルなトランスフォーマーベースのグラフ事前学習フレームワークを導入する。
本フレームワークは,産業用データセットと公共用データセットの両方で最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 34.21420029237621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph pre-training has been concentrated on graph-level on small graphs (e.g., molecular graphs) or learning node representations on a fixed graph. Extending graph pre-trained models to web-scale graphs with billions of nodes in industrial scenarios, while avoiding negative transfer across graphs or tasks, remains a challenge. We aim to develop a general graph pre-trained model with inductive ability that can make predictions for unseen new nodes and even new graphs. In this work, we introduce a scalable transformer-based graph pre-training framework called PGT (Pre-trained Graph Transformer). Specifically, we design a flexible and scalable graph transformer as the backbone network. Meanwhile, based on the masked autoencoder architecture, we design two pre-training tasks: one for reconstructing node features and the other one for reconstructing local structures. Unlike the original autoencoder architecture where the pre-trained decoder is discarded, we propose a novel strategy that utilizes the decoder for feature augmentation. We have deployed our framework on Tencent's online game data. Extensive experiments have demonstrated that our framework can perform pre-training on real-world web-scale graphs with over 540 million nodes and 12 billion edges and generalizes effectively to unseen new graphs with different downstream tasks. We further conduct experiments on the publicly available ogbn-papers100M dataset, which consists of 111 million nodes and 1.6 billion edges. Our framework achieves state-of-the-art performance on both industrial datasets and public datasets, while also enjoying scalability and efficiency.
- Abstract(参考訳): グラフ事前学習は、小さなグラフ(例えば分子グラフ)のグラフレベルに集中したり、固定グラフ上のノード表現を学習したりしてきた。
グラフ事前トレーニングされたモデルを、産業シナリオにおいて数十億のノードを持つWebスケールのグラフに拡張する一方で、グラフやタスク間の負の転送を回避することは、依然として課題である。
我々は,未知の新しいノードや新しいグラフを予測できるインダクティブ能力を持つ汎用グラフ事前学習モデルを開発することを目指している。
本稿では、PGT(Pre-trained Graph Transformer)と呼ばれるスケーラブルなトランスフォーマーベースのグラフ事前学習フレームワークを提案する。
具体的には、バックボーンネットワークとしてフレキシブルでスケーラブルなグラフ変換器を設計する。
一方、マスク付きオートエンコーダアーキテクチャに基づいて、ノード特徴の再構成と局所構造の再構築の2つの事前学習タスクを設計する。
事前学習したデコーダを破棄するオリジナルのオートエンコーダアーキテクチャとは異なり,デコーダを機能拡張に利用する新しい戦略を提案する。
私たちはTencentのオンラインゲームデータにフレームワークをデプロイしました。
大規模な実験により、我々のフレームワークは5億4000万以上のノードと1200億のエッジを持つ実世界のWebスケールグラフで事前トレーニングを実行でき、下流タスクの異なる新しいグラフを効果的に一般化できることが示された。
我々はさらに、1100万のノードと160億のエッジからなる、公開可能なogbn-papers100Mデータセットの実験を行っている。
当社のフレームワークは,産業用データセットと公共用データセットの両方で最先端のパフォーマンスを実現すると同時に,スケーラビリティと効率性も享受する。
関連論文リスト
- Graph Transformers for Large Graphs [57.19338459218758]
この研究は、モデルの特徴と重要な設計制約を識別することに焦点を当てた、単一の大規模グラフでの表現学習を前進させる。
この研究の重要な革新は、局所的な注意機構と組み合わされた高速な近傍サンプリング技術の作成である。
ogbn-products と snap-patents の3倍の高速化と16.8%の性能向上を報告し、ogbn-100M で LargeGT を5.9% の性能改善で拡張した。
論文 参考訳(メタデータ) (2023-12-18T11:19:23Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
新しい分散グラフ学習システムGraphThetaを紹介します。
複数のトレーニング戦略をサポートし、大規模グラフ上で効率的でスケーラブルな学習を可能にします。
この仕事は、文学における10億規模のネットワーク上で実施された最大のエッジアトリビュートGNN学習タスクを表します。
論文 参考訳(メタデータ) (2021-04-21T14:51:33Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - SIGN: Scalable Inception Graph Neural Networks [4.5158585619109495]
本稿では,グラフサンプリングの必要性を助長する,効率的でスケーラブルなグラフ深層学習アーキテクチャを提案する。
私たちのアーキテクチャでは、異なるローカルグラフ演算子を使用して、そのタスクに最も適しています。
我々は,1億1000万のノードと15億のエッジを持つ,最大の公開グラフデータセットであるogbn-papers100Mについて,最先端の結果を得た。
論文 参考訳(メタデータ) (2020-04-23T14:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。