論文の概要: Craftium: An Extensible Framework for Creating Reinforcement Learning Environments
- arxiv url: http://arxiv.org/abs/2407.03969v1
- Date: Thu, 4 Jul 2024 14:38:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:43:28.603668
- Title: Craftium: An Extensible Framework for Creating Reinforcement Learning Environments
- Title(参考訳): Craftium: 強化学習環境を構築するための拡張可能なフレームワーク
- Authors: Mikel Malagón, Josu Ceberio, Jose A. Lozano,
- Abstract要約: 本稿では,リッチな3次元視覚的RL環境を探索・作成するための新しいフレームワークであるCraftiumについて述べる。
Craftiumは、Minetestゲームエンジンと人気のあるGymnasium APIの上に構築されている。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Most Reinforcement Learning (RL) environments are created by adapting existing physics simulators or video games. However, they usually lack the flexibility required for analyzing specific characteristics of RL methods often relevant to research. This paper presents Craftium, a novel framework for exploring and creating rich 3D visual RL environments that builds upon the Minetest game engine and the popular Gymnasium API. Minetest is built to be extended and can be used to easily create voxel-based 3D environments (often similar to Minecraft), while Gymnasium offers a simple and common interface for RL research. Craftium provides a platform that allows practitioners to create fully customized environments to suit their specific research requirements, ranging from simple visual tasks to infinite and procedurally generated worlds. We also provide five ready-to-use environments for benchmarking and as examples of how to develop new ones. The code and documentation are available at https://github.com/mikelma/craftium/.
- Abstract(参考訳): ほとんどの強化学習(RL)環境は、既存の物理シミュレータやビデオゲームに適応することで作られる。
しかし、それらは通常、研究によく関係するRL法の特徴を分析するのに必要な柔軟性を欠いている。
本稿では,Minetestゲームエンジンと人気のあるGymnasium API上に構築されたリッチな3DビジュアルRL環境を探索・作成するための新しいフレームワークであるCraftiumを提案する。
Minetestは拡張するために構築されており、Voxelベースの3D環境(しばしばMinecraftに似ている)を簡単に作成するために使用することができる。
Craftiumは、シンプルな視覚的なタスクから無限で手続き的に生成された世界まで、特定の研究要件に合わせて、完全にカスタマイズされた環境を作成できるプラットフォームを提供する。
また、ベンチマークのための5つの準備可能な環境や、新しいものの開発方法の例も提供します。
コードとドキュメントはhttps://github.com/mikelma/craftium/.comで公開されている。
関連論文リスト
- Gymnasium: A Standard Interface for Reinforcement Learning Environments [5.7144222327514616]
強化学習(Reinforcement Learning、RL)は、人工知能の多くの領域に革命をもたらす可能性がある成長分野である。
その約束にもかかわらず、RLの研究は環境やアルゴリズムの実装における標準化の欠如によってしばしば妨げられている。
Gymnasiumはオープンソースのライブラリで、RL環境の標準APIを提供する。
論文 参考訳(メタデータ) (2024-07-24T06:35:05Z) - Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning [4.067733179628694]
Craftaxは、JAXでCrafterをベースとして書き直したもので、Pythonネイティブのオリジナルよりも最大250倍高速である。
10億の環境相互作用を使ったPPOの実行は、1つのGPUだけで1時間以内で終了する。
本研究では,グローバル・エピソード探索を含む既存の手法と,教師なし環境設計がベンチマークで実質的な進歩を損なうことを示す。
論文 参考訳(メタデータ) (2024-02-26T18:19:07Z) - Ghost in the Minecraft: Generally Capable Agents for Open-World
Environments via Large Language Models with Text-based Knowledge and Memory [97.87093169454431]
Ghost in the Minecraft (GITM) は、LLM(Large Language Models)とテキストベースの知識と記憶を統合する新しいフレームワークである。
我々は、構造化されたアクションのセットを開発し、LSMを活用してエージェントが実行するアクションプランを生成する。
LLMをベースとしたエージェントは、従来の手法を著しく上回り、成功率+47.5%という顕著な改善を達成している。
論文 参考訳(メタデータ) (2023-05-25T17:59:49Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - WILD-SCAV: Benchmarking FPS Gaming AI on Unity3D-based Environments [5.020816812380825]
深部強化学習(RL)の最近の進歩は,シミュレーション環境における複雑な意思決定能力を示している。
しかしながら、これらは、トレーニングやテストが行われる環境の複雑さやバリエーションが欠如しているため、より複雑な問題はほとんどありません。
我々は,このギャップを埋めるために,3次元オープンワールドFPSゲームに基づく,強力でオープンな環境であるWILD-SCAVを開発した。
エージェントは3D環境を理解し、ナビゲートし、計画し、人間のような方法で競争し、協力することができる。
論文 参考訳(メタデータ) (2022-10-14T13:39:41Z) - MineDojo: Building Open-Ended Embodied Agents with Internet-Scale
Knowledge [70.47759528596711]
私たちは、人気のMinecraftゲーム上に構築された新しいフレームワークであるMineDojoを紹介します。
本稿では,学習報酬関数として,大規模な事前学習ビデオ言語モデルを活用する新しいエージェント学習アルゴリズムを提案する。
我々のエージェントは、手動で設計した密なシェーピング報酬なしで、自由形式の言語で指定された様々なオープンエンドタスクを解くことができる。
論文 参考訳(メタデータ) (2022-06-17T15:53:05Z) - OPEn: An Open-ended Physics Environment for Learning Without a Task [132.6062618135179]
オープンエンドな物理環境で学んだ世界のモデルが、特定のタスクを伴わずに、下流の物理推論タスクに再利用できるかどうかについて検討する。
我々は,OPEn(Open-ended Physics ENvironment)のベンチマークを構築し,この環境における学習表現をテストするためのいくつかのタスクを明示的に設計する。
その結果、教師なしのコントラスト学習を表現学習に用いたエージェントと、探索のためのインパクト駆動学習が最良の結果となった。
論文 参考訳(メタデータ) (2021-10-13T17:48:23Z) - MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning
Research [24.9044606044585]
MiniHackは、新しい深層強化学習環境を簡単に設計するための強力なサンドボックスフレームワークである。
NetHackのエンティティと環境ダイナミクスの完全なセットを活用することで、MiniHackはカスタムのRLテストベッドを設計できる。
さまざまなRLタスクとベースラインに加えて、MiniHackは既存のRLベンチマークをラップし、シームレスに複雑さを追加する方法を提供する。
論文 参考訳(メタデータ) (2021-09-27T17:22:42Z) - Evaluating Continual Learning Algorithms by Generating 3D Virtual
Environments [66.83839051693695]
連続学習とは、人間や動物が特定の環境で徐々に学習する能力である。
本稿では3次元仮想環境の最近の進歩を活用して,フォトリアリスティックな外観を持つ潜在的に長寿命な動的シーンの自動生成にアプローチすることを提案する。
本論文の新たな要素は、シーンがパラメトリックな方法で記述され、エージェントが知覚する入力ストリームの視覚的複雑さを完全に制御できることである。
論文 参考訳(メタデータ) (2021-09-16T10:37:21Z) - The NetHack Learning Environment [79.06395964379107]
本稿では、強化学習研究のための手続き的に生成されたローグのような環境であるNetHack Learning Environment(NLE)を紹介する。
我々は,NetHackが,探索,計画,技術習得,言語条件付きRLといった問題に対する長期的な研究を促進するのに十分複雑であると主張している。
我々は,分散されたDeep RLベースラインとランダムネットワーク蒸留探索を用いて,ゲームの初期段階における実験的な成功を示す。
論文 参考訳(メタデータ) (2020-06-24T14:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。