Federated Continual Instruction Tuning
- URL: http://arxiv.org/abs/2503.12897v1
- Date: Mon, 17 Mar 2025 07:58:06 GMT
- Title: Federated Continual Instruction Tuning
- Authors: Haiyang Guo, Fanhu Zeng, Fei Zhu, Wenzhuo Liu, Da-Han Wang, Jian Xu, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract summary: Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training.<n>We introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge.<n>Our proposed method significantly enhances model performance across varying levels of data and catastrophic forgetting.
- Score: 39.344583304181135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Our source code and dataset will be made publicly available.
Related papers
- MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning [20.79390984800288]
Large Language Models (LLMs) are increasingly applied across various tasks.
We propose MDIT, a novel model-free data method for diverse instruction tuning.
Extensive experiments show that our method achieves superior performance in multiple benchmark tasks.
arXiv Detail & Related papers (2025-04-09T21:28:17Z) - AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.<n>The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.<n>We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts [20.202031878825153]
We propose a novel dynamic data mixture for MoE instruction tuning.
Inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets.
Results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge & reasoning tasks and open-ended queries.
arXiv Detail & Related papers (2024-06-17T06:47:03Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Detecting Morphing Attacks via Continual Incremental Training [10.796380524798744]
Recent Continual Learning (CL) paradigm may represent an effective solution to enable incremental training, even through multiple sites.
We investigate the performance of different Continual Learning methods in this scenario, simulating a learning model that is updated every time a new chunk of data, even of variable size, is available.
Experimental results reveal that a particular CL method, namely Learning without Forgetting (LwF), is one of the best-performing algorithms.
arXiv Detail & Related papers (2023-07-27T17:48:29Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - FedGradNorm: Personalized Federated Gradient-Normalized Multi-Task
Learning [50.756991828015316]
Multi-task learning (MTL) is a novel framework to learn several tasks simultaneously with a single shared network.
We propose FedGradNorm which uses a dynamic-weighting method to normalize norms in order to balance learning speeds among different tasks.
arXiv Detail & Related papers (2022-03-24T17:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.