Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models
- URL: http://arxiv.org/abs/2411.02564v2
- Date: Mon, 11 Nov 2024 11:46:16 GMT
- Title: Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models
- Authors: Meng Cao, Yuyang Liu, Yingfei Liu, Tiancai Wang, Jiahua Dong, Henghui Ding, Xiangyu Zhang, Ian Reid, Xiaodan Liang,
- Abstract summary: Continual LLaVA is a rehearsal-free method tailored for continual instruction tuning in LVLMs.
Experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
- Score: 93.5327725085853
- License:
- Abstract: Instruction tuning constitutes a prevalent technique for tailoring Large Vision Language Models (LVLMs) to meet individual task requirements. To date, most of the existing approaches are confined to single-task adaptation, whereas the requirements in real-world scenarios are inherently varied and continually evolving. Thus an ideal LVLM should sustain continual instruction tuning in the face of stream-task distributions (i.e., different domains, emerging capabilities, and new datasets) while minimizing the forgetting of previously acquired knowledge. To achieve this, we propose a new benchmark for COntinuAl inStruction Tuning on LVLMs (COAST), which encompasses the aforementioned domain-incremental, capability-incremental, and dataset-incremental configurations. In terms of methodology, we propose Continual LLaVA, a rehearsal-free method tailored for continual instruction tuning in LVLMs. To circumvent the additional overhead associated with experience replay, we freeze LVLMs and construct the dual increment embeddings for each input instruction to facilitate parameter-efficient tuning. Specifically, the increment embeddings can be decomposed into two principal components: 1) intrinsic increment embeddings to encode task-specific characteristics. To achieve this, we set up a low-rank pool containing candidate embeddings, from which we select the relevant ones based on their similarity with the user instructions; 2) contextual increment embeddings to investigate the inter-dependencies across tasks. In this regard, the low-rank embeddings chosen in the previous tasks are aggregated via learnable weighted sum to provide complementary hints. Extensive experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
Related papers
- Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning [16.873306091966693]
Visual instruction tuning enables large language models (MLLMs) to handle a wide range of vision tasks by framing them as language-based instructions.
We identify a dual form of catastrophic forgetting in CVIT, where MLLMs forget previously learned visual understanding but also experience a decline in instruction following abilities.
We introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules.
This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance.
arXiv Detail & Related papers (2024-11-21T09:00:15Z) - LiNeS: Post-training Layer Scaling Prevents Forgetting and Enhances Model Merging [80.17238673443127]
LiNeS is a post-training editing technique designed to preserve pre-trained generalization while enhancing fine-tuned task performance.
LiNeS demonstrates significant improvements in both single-task and multi-task settings across various benchmarks in vision and natural language processing.
arXiv Detail & Related papers (2024-10-22T16:26:05Z) - LW2G: Learning Whether to Grow for Prompt-based Continual Learning [15.766350352592331]
Recent Prompt-based Continual Learning (PCL) has achieved remarkable performance with Pre-Trained Models (PTMs)
We propose a plug-in module in the former stage to textbfLearn Whether to Grow (LW2G) based on the disparities between tasks.
Inspired by Gradient Projection Continual Learning, our LW2G develops a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks.
arXiv Detail & Related papers (2024-09-27T15:55:13Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
We explore capturing the task-specific information via meticulous refinement of entire Vision-Language Models (VLMs)
To mitigate these issues, we propose a framework named CLIP-CITE via designing a discriminative visual-text task.
arXiv Detail & Related papers (2024-07-04T15:22:54Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Generalizing LTL Instructions via Future Dependent Options [7.8578244861940725]
This paper proposes a novel multi-task algorithm with improved learning efficiency and optimality.
In order to propagate the rewards of satisfying future subgoals back more efficiently, we propose to train a multi-step function conditioned on the subgoal sequence.
In experiments on three different domains, we evaluate the generalization capability of the agent trained by the proposed algorithm.
arXiv Detail & Related papers (2022-12-08T21:44:18Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.