論文の概要: Detect Closer Surfaces that can be Seen: New Modeling and Evaluation in Cross-domain 3D Object Detection
- arxiv url: http://arxiv.org/abs/2407.04061v3
- Date: Fri, 12 Jul 2024 12:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 04:08:24.008150
- Title: Detect Closer Surfaces that can be Seen: New Modeling and Evaluation in Cross-domain 3D Object Detection
- Title(参考訳): 観察可能な近接面の検出:クロスドメイン3次元物体検出の新しいモデリングと評価
- Authors: Ruixiao Zhang, Yihong Wu, Juheon Lee, Adam Prugel-Bennett, Xiaohao Cai,
- Abstract要約: 本研究では,エゴ車両のセンサに近接する表面を検出する3次元物体検出モデルの能力を測定するための2つの指標を提案する。
また、学習可能な近接面にもっと焦点を合わせるために、EdgeHeadという改良ヘッドも提案しています。
- 参考スコア(独自算出の注目度): 7.464834150824093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of domain adaptation technologies has not yet reached an ideal level in the current 3D object detection field for autonomous driving, which is mainly due to significant differences in the size of vehicles, as well as the environments they operate in when applied across domains. These factors together hinder the effective transfer and application of knowledge learned from specific datasets. Since the existing evaluation metrics are initially designed for evaluation on a single domain by calculating the 2D or 3D overlap between the prediction and ground-truth bounding boxes, they often suffer from the overfitting problem caused by the size differences among datasets. This raises a fundamental question related to the evaluation of the 3D object detection models' cross-domain performance: Do we really need models to maintain excellent performance in their original 3D bounding boxes after being applied across domains? From a practical application perspective, one of our main focuses is actually on preventing collisions between vehicles and other obstacles, especially in cross-domain scenarios where correctly predicting the size of vehicles is much more difficult. In other words, as long as a model can accurately identify the closest surfaces to the ego vehicle, it is sufficient to effectively avoid obstacles. In this paper, we propose two metrics to measure 3D object detection models' ability of detecting the closer surfaces to the sensor on the ego vehicle, which can be used to evaluate their cross-domain performance more comprehensively and reasonably. Furthermore, we propose a refinement head, named EdgeHead, to guide models to focus more on the learnable closer surfaces, which can greatly improve the cross-domain performance of existing models not only under our new metrics, but even also under the original BEV/3D metrics.
- Abstract(参考訳): ドメイン適応技術の性能は、現在の自動運転車の3Dオブジェクト検出分野において、まだ理想的なレベルに達していない。
これらの要因が組み合わさって、特定のデータセットから学んだ知識の効果的な伝達と応用を妨げる。
既存の評価指標は、当初、予測と接地トラスト境界ボックス間の2次元または3次元の重なりを計算して、単一領域上での評価のために設計されているため、データセット間のサイズ差に起因する過度な問題に悩まされることが多い。
ドメインにまたがって適用された後、元の3Dバウンディングボックスで優れたパフォーマンスを維持するために、本当にモデルが必要なのでしょうか?
実用的アプリケーションの観点からは、車両と他の障害物との衝突を防止することに重点を置いています。
言い換えれば、モデルがエゴ車両に最も近い表面を正確に識別できる限り、障害を効果的に回避することは十分である。
本稿では,エゴ車両のセンサに近接する表面を検出する3次元物体検出モデルの能力を測定するための2つの指標を提案する。
さらに、EdgeHeadと呼ばれる改良ヘッドを提案し、学習可能な近接面にもっと焦点を合わせることで、既存のモデルのクロスドメインパフォーマンスを大幅に向上させることができる。
関連論文リスト
- DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps [2.79552147676281]
3次元物体検出(UADA3D)のための教師なし反転領域適応法について紹介する。
様々な適応シナリオにおいて有効性を示し、自動運転車と移動ロボットの両方の領域で顕著に改善されていることを示す。
私たちのコードはオープンソースで、まもなく利用可能になります。
論文 参考訳(メタデータ) (2024-03-26T12:08:14Z) - Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDAは、3Dや深度データを使わずに、ニュアンスドライデンのターゲットドメインに適応できる手法である。
対象のカテゴリを単純な立方体メッシュとして表現し、ニューラル特徴活性化の生成モデルを利用する。
本手法は,グローバルな擬似ラベル付きデータセットの微調整を軽度な仮定でシミュレートする。
論文 参考訳(メタデータ) (2024-01-19T17:48:05Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection [16.021932740447966]
クロスLiDAR3D検出のためのドメイン適応は、生データ表現に大きなギャップがあるため困難である。
以上の課題を克服する、教師なしのドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2022-12-01T03:22:55Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
ホログラフィーロス(Homography Loss)と呼ばれる,2次元情報と3次元情報の両方を利用する識別可能なロス関数を提案する。
提案手法は,KITTI 3Dデータセットにおいて,他の最先端技術と比較して高い性能を示す。
論文 参考訳(メタデータ) (2022-04-02T03:48:03Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
単眼画像から3Dバウンディングボックスを推定することは、自動運転に不可欠な要素です。
本研究では, 各サブタスクがもたらす影響を定量化し, 局所化誤差を求めることが, モノクロ3次元検出の抑制に欠かせない要因である。
論文 参考訳(メタデータ) (2021-03-30T10:38:01Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。