Sparsest Models Elude Pruning: An Exposé of Pruning's Current Capabilities
- URL: http://arxiv.org/abs/2407.04075v1
- Date: Thu, 4 Jul 2024 17:33:15 GMT
- Title: Sparsest Models Elude Pruning: An Exposé of Pruning's Current Capabilities
- Authors: Stephen Zhang, Vardan Papyan,
- Abstract summary: Pruning has emerged as a promising approach for compressing large-scale models, yet its effectiveness in recovering the sparsest of models has not yet been explored.
We conducted an extensive series of 485,838 experiments, applying a range of state-of-the-art pruning algorithms to a synthetic dataset we created, named the Cubist Spiral.
Our findings reveal a significant gap in performance compared to ideal sparse networks, which we identified through a novel search algorithm.
- Score: 4.842973374883628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pruning has emerged as a promising approach for compressing large-scale models, yet its effectiveness in recovering the sparsest of models has not yet been explored. We conducted an extensive series of 485,838 experiments, applying a range of state-of-the-art pruning algorithms to a synthetic dataset we created, named the Cubist Spiral. Our findings reveal a significant gap in performance compared to ideal sparse networks, which we identified through a novel combinatorial search algorithm. We attribute this performance gap to current pruning algorithms' poor behaviour under overparameterization, their tendency to induce disconnected paths throughout the network, and their propensity to get stuck at suboptimal solutions, even when given the optimal width and initialization. This gap is concerning, given the simplicity of the network architectures and datasets used in our study. We hope that our research encourages further investigation into new pruning techniques that strive for true network sparsity.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Sensitivity-Aware Mixed-Precision Quantization and Width Optimization of Deep Neural Networks Through Cluster-Based Tree-Structured Parzen Estimation [4.748931281307333]
We introduce an innovative search mechanism for automatically selecting the best bit-width and layer-width for individual neural network layers.
This leads to a marked enhancement in deep neural network efficiency.
arXiv Detail & Related papers (2023-08-12T00:16:51Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
We propose a new approach based on differential inclusions of inverse scale spaces.
We show that DessiLBI unveils "winning tickets" in early epochs.
arXiv Detail & Related papers (2020-07-04T04:40:16Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.