論文の概要: Predictive Coding Networks and Inference Learning: Tutorial and Survey
- arxiv url: http://arxiv.org/abs/2407.04117v2
- Date: Mon, 22 Jul 2024 14:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:42:21.537208
- Title: Predictive Coding Networks and Inference Learning: Tutorial and Survey
- Title(参考訳): 予測符号化ネットワークと推論学習:チュートリアルとサーベイ
- Authors: Björn van Zwol, Ro Jefferson, Egon L. van den Broek,
- Abstract要約: 予測符号化ネットワーク(PCN)は、予測符号化の神経科学的な枠組みに基づいている。
バックプロパゲーション(BP)で訓練された従来のニューラルネットワークとは異なり、PCNは推論学習(IL)を利用する。
本質的に確率的(グラフィック的)潜在変数モデルとして、PCNは教師付き学習と教師なし(生成的)モデリングの両方に汎用的なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.7510165488300368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed a growing call for renewed emphasis on neuroscience-inspired approaches in artificial intelligence research, under the banner of NeuroAI. A prime example of this is predictive coding networks (PCNs), based on the neuroscientific framework of predictive coding. This framework views the brain as a hierarchical Bayesian inference model that minimizes prediction errors through feedback connections. Unlike traditional neural networks trained with backpropagation (BP), PCNs utilize inference learning (IL), a more biologically plausible algorithm that explains patterns of neural activity that BP cannot. Historically, IL has been more computationally intensive, but recent advancements have demonstrated that it can achieve higher efficiency than BP with sufficient parallelization. Furthermore, PCNs can be mathematically considered a superset of traditional feedforward neural networks (FNNs), significantly extending the range of trainable architectures. As inherently probabilistic (graphical) latent variable models, PCNs provide a versatile framework for both supervised learning and unsupervised (generative) modeling that goes beyond traditional artificial neural networks. This work provides a comprehensive review and detailed formal specification of PCNs, particularly situating them within the context of modern ML methods. Additionally, we introduce a Python library (PRECO) for practical implementation. This positions PC as a promising framework for future ML innovations.
- Abstract(参考訳): 近年、NeuroAIの旗の下で、人工知能研究において神経科学に触発されたアプローチに新たな重点を置く声が高まっている。
この主な例は予測符号化ネットワーク(PCN)であり、予測符号化の神経科学的な枠組みに基づいている。
このフレームワークは、脳を階層的ベイズ推論モデルとみなし、フィードバック接続による予測エラーを最小限にする。
バックプロパゲーション(BP)で訓練された従来のニューラルネットワークとは異なり、PCNは推論学習(IL)を利用する。
歴史的には、ILはより計算集約的であるが、最近の進歩により、十分な並列化でBPよりも高い効率を達成できることが示されている。
さらに、PCNは伝統的なフィードフォワードニューラルネットワーク(FNN)のスーパーセットと見なすことができ、トレーニング可能なアーキテクチャの範囲を大幅に広げることができる。
本質的に確率的(グラフィック的)潜在変数モデルとして、PCNは従来の人工ニューラルネットワークを超える教師付き学習と教師なし(生成的)モデリングの両方に汎用的なフレームワークを提供する。
この研究は、PCNの包括的なレビューと詳細な形式仕様を提供し、特に近代的なMLメソッドのコンテキストにその仕様を配置する。
さらに,実践的な実装のためのPythonライブラリ(PRECO)についても紹介する。
これにより、PCは将来のMLイノベーションのための有望なフレームワークとして位置づけられる。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks [20.309112286222238]
Spiking Neural Networks (SNN)は、より生物学的に可能な脳モデルを提供する。
本稿では,Leaky Integrate-and-fire ニューロンからなる階層型 SNN に対して,Spike-Timing Dependent Plasticity (STDP) に基づく教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-07T13:40:09Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - On the relationship between predictive coding and backpropagation [0.0]
予測符号化は、ニューラルネットワークのトレーニングのためのバックプロパゲーションに代わる、潜在的に生物学的に現実的な代替物として提案されている。
この原稿は、教師付き学習タスクにおけるフィードフォワード人工ニューラルネットワークのトレーニングにおける予測符号化とバックプロパゲーションの数学的関係に関する最近の研究をレビューし、拡張している。
論文 参考訳(メタデータ) (2021-06-20T18:22:50Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Predictive Coding Can Do Exact Backpropagation on Any Neural Network [40.51949948934705]
計算グラフ上で直接定義することで(ILと)Z-ILを一般化する。
これは、任意のニューラルネットワーク上のパラメータを更新する方法でBPと同等であることが示されている最初の生物学的に実行可能なアルゴリズムです。
論文 参考訳(メタデータ) (2021-03-08T11:52:51Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。