論文の概要: Contrastive Learning in Memristor-based Neuromorphic Systems
- arxiv url: http://arxiv.org/abs/2409.10887v1
- Date: Tue, 17 Sep 2024 04:48:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:06:56.124144
- Title: Contrastive Learning in Memristor-based Neuromorphic Systems
- Title(参考訳): メムリスタに基づくニューロモーフィックシステムにおけるコントラスト学習
- Authors: Cory Merkel, Alexander Ororbia,
- Abstract要約: スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
- 参考スコア(独自算出の注目度): 55.11642177631929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks, the third generation of artificial neural networks, have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks, including their high energy inefficiency and long-criticized biological implausibility. In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning. Our experimental simulations demonstrate that a hardware implementation of CSDP is capable of learning simple logic functions without the need to resort to complex gradient calculations.
- Abstract(参考訳): 第3世代のニューラルネットワークであるスパイクニューラルネットワークは、今日のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型可塑性(CSDP)の概念実証を設計し,検討する。
実験により,CSDPのハードウェア実装は,複雑な勾配計算に頼らずに単純な論理関数を学習できることが実証された。
関連論文リスト
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
シナプス可塑性のモデル化における歴史的,ボトムアップ的,トップダウン的なアプローチを概観する。
スパイクベース学習ルールの低レイテンシおよび低消費電力ハードウェア実装をサポートする計算プリミティブを同定する。
論文 参考訳(メタデータ) (2022-09-30T15:35:04Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
軸-体性および軸-体性シナプスを模擬した神経接続概念を導入する。
我々は,大規模ASRモデルの生物学的に現実的な実装によって,競争性能が向上できることを初めて実証した。
論文 参考訳(メタデータ) (2021-10-04T21:24:10Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。