Orchestrating LLMs with Different Personalizations
- URL: http://arxiv.org/abs/2407.04181v1
- Date: Thu, 4 Jul 2024 22:55:02 GMT
- Title: Orchestrating LLMs with Different Personalizations
- Authors: Jin Peng Zhou, Katie Z Luo, Jingwen Gu, Jason Yuan, Kilian Q. Weinberger, Wen Sun,
- Abstract summary: This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences.
Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification.
Starting from specialized expert LLMs, each trained for one particular preference dimension, we propose a black-box method that merges their outputs on a per-token level.
- Score: 28.344891363780576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to aligning large language models (LLMs) with individual human preferences, sometimes referred to as Reinforcement Learning from \textit{Personalized} Human Feedback (RLPHF). Given stated preferences along multiple dimensions, such as helpfulness, conciseness, or humor, the goal is to create an LLM without re-training that best adheres to this specification. Starting from specialized expert LLMs, each trained for one such particular preference dimension, we propose a black-box method that merges their outputs on a per-token level. We train a lightweight Preference Control Model (PCM) that dynamically translates the preference description and current context into next-token prediction weights. By combining the expert models' outputs at the token level, our approach dynamically generates text that optimizes the given preference. Empirical tests show that our method matches or surpasses existing preference merging techniques, providing a scalable, efficient alternative to fine-tuning LLMs for individual personalization.
Related papers
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora.
To make LLMs more usable, aligning them with human preferences is essential.
We propose an effective method, textbf MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time.
arXiv Detail & Related papers (2024-10-18T05:31:13Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
We present a public benchmark, PersonalLLM, focusing on adapting LLMs to provide maximal benefits for a particular user.
We curate open-ended prompts paired with many high-quality answers over which users would be expected to display heterogeneous latent preferences.
Our dataset and generated personalities offer an innovative testbed for developing personalization algorithms.
arXiv Detail & Related papers (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
arXiv Detail & Related papers (2024-09-18T11:54:45Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
This paper proposes the first method for personalized multimodal generation using large language models (LLMs)
It showcases its applications and validates its performance via an extensive experimental study on two datasets.
PMG has a significant improvement on personalization for up to 8% in terms of LPIPS while retaining the accuracy of generation.
arXiv Detail & Related papers (2024-04-07T03:05:57Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Personalized Soups: Personalized Large Language Model Alignment via
Post-hoc Parameter Merging [148.77027765872006]
We study Reinforcement Learning from Personalized Human Feedback (RLPHF) problem.
LLMs are aligned to multiple preferences by modeling alignment as a Multi-Objective Reinforcement Learning (MORL) problem.
We show that we can achieve personalized alignment by decomposing preferences into multiple dimensions.
arXiv Detail & Related papers (2023-10-17T20:22:13Z) - Parameter-Efficient Tuning Helps Language Model Alignment [57.27390187540737]
Previous works mainly adopt reinforcement learning (RLHF) and direct preference optimization (DPO) with human feedback for alignment.
Controllable generation offers more flexibility with regard to data format.
Our approach, alignMEnt with parameter-Efficient Tuning (MEET), improves the quality of control tokens.
arXiv Detail & Related papers (2023-10-01T23:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.