Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset
- URL: http://arxiv.org/abs/2407.04190v1
- Date: Fri, 5 Jul 2024 00:18:40 GMT
- Title: Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset
- Authors: Rahm Ranjan, David Ahmedt-Aristizabal, Mohammad Ali Armin, Juno Kim,
- Abstract summary: This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis.
We introduce The Gait Abnormality in Video dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets.
GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits.
- Score: 4.975410989590524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical gait analysis (CGA) using computer vision is an emerging field in artificial intelligence that faces barriers of accessible, real-world data, and clear task objectives. This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis. We introduce The Gait Abnormality in Video Dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets, which highlighted the need for a large and accessible gait dataset clinically annotated for CGA. GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits. Additionally, GAVD includes clinically annotated RGB data sourced from publicly available content on online platforms. It also encompasses over 400 subjects who have undergone clinical grade visual screening to represent a diverse range of abnormal gait patterns, captured in various settings, including hospital clinics and urban uncontrolled outdoor environments. We demonstrate the validity of the dataset and utility of action recognition models for CGA using pretrained models Temporal Segment Networks(TSN) and SlowFast network to achieve video abnormality detection of 94% and 92% respectively when tested on GAVD dataset. A GitHub repository https://github.com/Rahmyyy/GAVD consisting of convenient URL links, and clinically relevant annotation for CGA is provided for over 450 online videos, featuring diverse subjects performing a range of normal, pathological, and abnormal gait patterns.
Related papers
- AtGCN: A Graph Convolutional Network For Ataxic Gait Detection [0.0]
This paper presents a graph convolution network called AtGCN for detecting ataxic gait.
The problem is challenging as the deviation of an ataxic gait from a healthy gait is very subtle.
The proposed AtGCN model outperforms the state-of-the-art in detection and prediction with an accuracy of 93.46% and a MAE of 0.4169, respectively.
arXiv Detail & Related papers (2024-10-30T09:55:30Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
This research aims to bridge the gap by providing publicly accessible datasets and reliable tools for medical diagnosis.
We curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients.
These promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
arXiv Detail & Related papers (2024-06-26T06:39:11Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided
Gastrointestinal Disease Detection [6.231109933741383]
This dataset includes different anatomical landmarks, pathological abnormalities, polyp removal cases and normal findings from the GI tract.
It was annotated and verified by experienced GI endoscopists.
We believe our dataset can facilitate the development of AI-based algorithms for GI disease detection and classification.
arXiv Detail & Related papers (2023-07-16T19:36:03Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z) - GAIA: A Transfer Learning System of Object Detection that Fits Your
Needs [136.60609274344893]
Transfer learning with pre-training on large-scale datasets has played an increasingly significant role in computer vision and natural language processing.
In this paper, we focus on the area of object detection and present a transfer learning system named GAIA.
GAIA is capable of providing powerful pre-trained weights, selecting models that conform to downstream demands such as latency constraints and specified data domains.
arXiv Detail & Related papers (2021-06-21T18:24:20Z) - Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic
Polyp Segmentation Using Convolution Neural Networks [10.930181796935734]
We present a deep learning framework for recognizing lesions in colonoscopy and capsule endoscopy images.
To our knowledge, we present the first work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance.
arXiv Detail & Related papers (2021-01-15T10:08:53Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
We investigate how a jittering artifact degrades the visual quality of video segmentation results.
We propose a Coherent Loss with a generic framework to enhance the performance of a neural network against jittering artifacts.
arXiv Detail & Related papers (2020-10-25T10:48:28Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.