論文の概要: ArAIEval Shared Task: Propagandistic Techniques Detection in Unimodal and Multimodal Arabic Content
- arxiv url: http://arxiv.org/abs/2407.04247v1
- Date: Fri, 5 Jul 2024 04:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:41:15.135896
- Title: ArAIEval Shared Task: Propagandistic Techniques Detection in Unimodal and Multimodal Arabic Content
- Title(参考訳): ArAIEval共有タスク:一様および多様アラビアコンテンツにおける確率的手法の検出
- Authors: Maram Hasanain, Md. Arid Hasan, Fatema Ahmed, Reem Suwaileh, Md. Rafiul Biswas, Wajdi Zaghouani, Firoj Alam,
- Abstract要約: 我々は、ACL 2024と共同で開催されるアラビア2024会議の一環として組織された、ArAIEval共有タスクの第2版の概要を示す。
この版では、(i)つぶやきやニュース記事の特定による宣伝的テキストスパンの検出、(ii)プロパガンダ主義と非プロパガンダ主義のミームを区別する2つのタスクが提供されている。
最終評価フェーズには14チームが参加し、それぞれ6チームと9チームがタスク1と2に参加した。
- 参考スコア(独自算出の注目度): 9.287041393988485
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present an overview of the second edition of the ArAIEval shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. In this edition, ArAIEval offers two tasks: (i) detection of propagandistic textual spans with persuasion techniques identification in tweets and news articles, and (ii) distinguishing between propagandistic and non-propagandistic memes. A total of 14 teams participated in the final evaluation phase, with 6 and 9 teams participating in Tasks 1 and 2, respectively. Finally, 11 teams submitted system description papers. Across both tasks, we observed that fine-tuning transformer models such as AraBERT was at the core of the majority of the participating systems. We provide a description of the task setup, including a description of the dataset construction and the evaluation setup. We further provide a brief overview of the participating systems. All datasets and evaluation scripts are released to the research community (https://araieval.gitlab.io/). We hope this will enable further research on these important tasks in Arabic.
- Abstract(参考訳): ACL 2024と共同で開催されるアラビアNLP 2024会議の一環として組織されたArAIEval共有タスクの第2版の概要を紹介する。
このエディションでは、ArAIEvalは2つのタスクを提供します。
一 つぶやきやニュース記事の特定による宣伝的テキストスパンの検出
(二)プロパガンダ主義と非プロパガンダ主義のミームを区別すること。
最終評価フェーズには14チームが参加し、それぞれ6チームと9チームがタスク1と2に参加した。
最終的に11チームがシステム記述論文を提出した。
どちらのタスクも、AraBERTのような微調整トランスフォーマーモデルが、参加するシステムの大部分の中核にあることを観察した。
本稿では、データセットの構成と評価設定の記述を含むタスク設定について記述する。
さらに,参加システムの概要について概説する。
すべてのデータセットと評価スクリプトが研究コミュニティにリリースされている(https://araieval.gitlab.io/)。
これにより、アラビア語におけるこれらの重要なタスクについて、さらなる研究が可能になることを願っています。
関連論文リスト
- Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space --
Transformer Ensemble Models Tackling Deception and Persuasion [0.0]
本稿では,各課題のタスク1-Aとタスク2-Aのアプローチについて述べる。
タスクは、与えられたバイナリ分類問題に対して、ツイートとニュース記事のマルチジャンルスニペットを使用する。
タスク1-A(8位)では0.742、タスク2-A(7位)では0.901のマイクロF1スコアを達成した。
論文 参考訳(メタデータ) (2023-11-30T17:26:57Z) - ArAIEval Shared Task: Persuasion Techniques and Disinformation Detection
in Arabic Text [41.3267575540348]
本稿では, EMNLP 2023と共同で開催される第1回アラビア2023会議の一環として組織されたArAIEval共有タスクの概要を紹介する。
ArAIEvalは、アラビア文字上の2つのタスクを提供する: (i) 説得テクニックの検出、ツイートやニュース記事における説得テクニックの識別、および (ii) ツイート上のバイナリとマルチクラスの設定における偽情報検出。
最終評価フェーズには合計20チームが参加し、タスク1と2には14チームと16チームが参加した。
論文 参考訳(メタデータ) (2023-11-06T15:21:19Z) - BLP-2023 Task 2: Sentiment Analysis [7.725694295666573]
本稿では,第1回BLP2023ワークショップの一環として編成されたBLP知覚共有タスクの概要を紹介する。
このタスクは、ソーシャルメディアのテキストの特定の部分における感情の検出として定義される。
本稿では,データセット開発と評価設定を含むタスク設定の詳細な説明を行う。
論文 参考訳(メタデータ) (2023-10-24T21:00:41Z) - Overview of the BioLaySumm 2023 Shared Task on Lay Summarization of
Biomedical Research Articles [47.04555835353173]
本稿では,ACL 2023のBioNLPワークショップで開催されているバイオメディカルリサーチ記事のレイ要約(BioLaySumm)における共有タスクの結果について述べる。
この共有タスクの目的は、"遅延要約"を生成することができる抽象的な要約モデルを開発することである。
総合的な結果に加えて,BioLaySumm共有タスクのセットアップと洞察についても報告した。
論文 参考訳(メタデータ) (2023-09-29T15:43:42Z) - ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich
Document Images [198.35937007558078]
大会は2022年12月30日に開かれ、2023年3月24日に閉幕した。
トラック1には35人の参加者と91人の有効な応募があり、トラック2には15人の参加者と26人の応募がある。
提案手法の性能によると, 複雑なシナリオやゼロショットシナリオにおいて, 期待される情報抽出性能にはまだ大きなギャップがあると考えられる。
論文 参考訳(メタデータ) (2023-06-05T22:20:52Z) - CREATIVESUMM: Shared Task on Automatic Summarization for Creative
Writing [90.58269243992318]
本稿では,複数の創作分野,すなわち文学テキスト,映画脚本,テレビ脚本を要約する作業について紹介する。
4つのサブタスクとその対応するデータセットを導入し、本、映画脚本、プライムタイムテレビ脚本、昼間のソープオペラ脚本の要約に焦点を当てた。
COING 2022でのCREATIVESUMMワークショップの一環として、共有タスクには合計18の応募が寄せられた。
論文 参考訳(メタデータ) (2022-11-10T21:31:03Z) - IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument
Mining Tasks [59.457948080207174]
本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。
データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。
議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
論文 参考訳(メタデータ) (2022-03-23T08:07:32Z) - SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning [47.49596196559958]
本稿では,SemEval-2021共有タスクについて紹介する。4: Reading of Abstract Meaning (ReCAM)。
パスとそれに対応する質問が与えられた場合、参加者システムは、抽象概念の5つの候補から正しい回答を選択することが期待される。
Subtask 1は、物理的な世界で直接認識できない概念を、システムがいかにうまくモデル化できるかを評価することを目的としている。
Subtask 2は、ハイパーニム階層にある非特異な概念を解釈するモデルの能力に焦点を当てている。
Subtask 3は、2種類の抽象性に対するモデルの一般化可能性に関する洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2021-05-31T11:04:17Z) - AraBERT and Farasa Segmentation Based Approach For Sarcasm and Sentiment
Detection in Arabic Tweets [0.0]
サブタスクの1つは、あるアラビア語のツイートが本質的にサッカスティックであるかどうかを識別するシステムを開発することです。
もう1つは、アラビア語のツイートの感情を特定することを目的としている。
最終アプローチはSarcasmとSentiment Detectionのサブタスクでそれぞれ7位と4位にランクされた。
論文 参考訳(メタデータ) (2021-03-02T12:33:50Z) - SemEval-2020 Task 11: Detection of Propaganda Techniques in News
Articles [0.6999740786886536]
本稿では,新聞記事中のプロパガンダ技術の検出に関するSemEval-2020 Task 11の結果を紹介する。
このタスクには、スパン識別と技術分類という2つのサブタスクがあった。
両方のサブタスクでは、最高のシステムはトレーニング済みのトランスフォーマーとアンサンブルを使用していた。
論文 参考訳(メタデータ) (2020-09-06T10:05:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。