論文の概要: Understanding the Landscape of Leveraging IoT for Sustainable Growth in Saudi Arabia
- arxiv url: http://arxiv.org/abs/2407.04273v1
- Date: Fri, 5 Jul 2024 05:59:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:31:15.230322
- Title: Understanding the Landscape of Leveraging IoT for Sustainable Growth in Saudi Arabia
- Title(参考訳): サウジアラビアの持続的成長のためのIoT活用の景観理解
- Authors: Manal Alshehri, Ohoud Alharbi,
- Abstract要約: 農業におけるモノのインターネット(IoT)技術の統合は、特にサウジアラビア王国(KSA)における農業実践の変革を約束する。
本研究は,KSA農家におけるスマート農業の実践について考察した。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of Internet of Things (IoT) technologies in agriculture holds promise for transforming farming practices, particularly in the Kingdom of Saudi Arabia (KSA). This study explores the adoption of smart farming practices among KSA farmers. Due to the geographical location and nature of KSA, it faces significant challenges in agriculture. The objective of this research is to discuss how IoT will enhance agriculture in KSA and identify its current usage by conducting a study on Saudi farmers with varying ages, regions, and years of experience. The results indicate that 90% of the farmers encounter challenges in farming, and all of them express interest in adopting smart farming to address these issues. While 60% of farmers are currently utilizing IoT technologies, they encounter challenges in implementing smart farming practices. Thus, smart farming presents solutions to prevalent challenges including adverse weather, water scarcity, and labor shortages, though barriers include cost and educational challenges.
- Abstract(参考訳): 農業におけるモノのインターネット(IoT)技術の統合は、特にサウジアラビア王国(KSA)において、農業の実践を変えることを約束している。
本研究は,KSA農家におけるスマート農業の実践について考察した。
KSAの地理的な位置と性質のため、農業において大きな課題に直面している。
本研究の目的は,様々な年齢,地域,経験年数をもつサウジアラビアの農家を対象に,IoTがKSAの農業をいかに向上させるのかを議論し,その利用状況を明らかにすることである。
その結果、農家の90%が農業の課題に直面しており、これらの問題に対処するためにスマート農業を採用することに関心を示していることが示唆された。
現在、農家の60%がIoT技術を利用しているが、スマート農業の実践における課題に直面している。
このように、スマート農業は、悪天候、水不足、労働不足など、一般的な課題に対する解決策を提供するが、障壁にはコストと教育上の課題が含まれる。
関連論文リスト
- Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
農業分野における最初のマルチモーダル・インストラクション・フォロー・データセットを構築した。
このデータセットは、約40万のデータエントリを持つ221種類以上の害虫と病気をカバーしている。
本稿では,農業用マルチモーダル対話システムであるAgri-LLaVAを開発するための知識注入型学習手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T04:34:23Z) - Harnessing Artificial Intelligence for Sustainable Agricultural
Development in Africa: Opportunities, Challenges, and Impact [0.0]
この研究は、農業におけるAI応用の動的な景観をナビゲートする。
精密農業, 作物モニタリング, 温暖化対策などの機会について検討した。
倫理的考察や政策への影響についても論じる。
論文 参考訳(メタデータ) (2024-01-03T23:02:13Z) - Smart Connected Farms and Networked Farmers to Tackle Climate Challenges
Impacting Agricultural Production [5.455648887547882]
情報通信技術、精密農業、データ分析が急速に進歩し、スマート・コネクテッド・ファーム(SCF)の創出のための肥大化の原動力となっている。
ネットワークと調整された農夫ネットワークは、悪天候に対処しながら、農業生産と収益性を高めるために、農家にユニークな利点を提供する。
論文 参考訳(メタデータ) (2023-12-19T17:08:43Z) - Leaf-Based Plant Disease Detection and Explainable AI [16.128084819516715]
農業部門は国の経済成長に不可欠な役割を担っている。
植物病は農業に影響を及ぼす重要な要因の1つである。
研究者は、植物病を検出するAIと機械学習技術に基づく多くのアプリケーションを調査してきた。
論文 参考訳(メタデータ) (2023-12-17T03:40:12Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - AgroTIC: Bridging the gap between farmers, agronomists, and merchants
through smartphones and machine learning [16.079127761987667]
アグロティック(Agrotic)は、農夫、農夫、商人のギャップを埋めるスマートフォンベースの農業用アプリケーションである。
コロンビアのサンタンデール県のキツネソウ栽培農家を対象に,アグロティック・アプリ(Agrotic app)の事例研究を行った。
論文 参考訳(メタデータ) (2023-05-21T10:07:51Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Readiness of the South African Agricultural Sector to Implement IoT [0.0]
農業における技術利用は、食品生産と食品持続可能性を改善する可能性があるという証拠がある。
IoT(Internet of Things)は、気候変動が食料安全保障に与える影響を克服するための潜在的なツールとして提案されている。
本研究は,IoTの広範な実装に向けた南アフリカの農業部門の準備について検討する。
論文 参考訳(メタデータ) (2021-08-23T11:25:20Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z) - The 1st Agriculture-Vision Challenge: Methods and Results [144.57794061346974]
第1回農業ビジョンチャレンジは、航空画像から農業パターン認識のための新しい効果的なアルゴリズムの開発を奨励することを目的としている。
約57の参加チームが、航空農業のセマンティックセグメンテーションの最先端を達成するために競っている。
本報告では,課題における注目すべき手法と成果について概説する。
論文 参考訳(メタデータ) (2020-04-21T05:02:31Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。