論文の概要: Learning from Data to Optimize Control in Precision Farming
- arxiv url: http://arxiv.org/abs/2007.05493v1
- Date: Tue, 7 Jul 2020 12:44:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 19:33:38.110495
- Title: Learning from Data to Optimize Control in Precision Farming
- Title(参考訳): 精密農業におけるデータからの学習と制御の最適化
- Authors: Alexander Kocian and Luca Incrocci
- Abstract要約: 特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision farming is one way of many to meet a 70 percent increase in global
demand for agricultural products on current agricultural land by 2050 at
reduced need of fertilizers and efficient use of water resources. The catalyst
for the emergence of precision farming has been satellite positioning and
navigation followed by Internet-of-Things, generating vast information that can
be used to optimize farming processes in real-time. Statistical tools from data
mining, predictive modeling, and machine learning analyze pattern in historical
data, to make predictions about future events as well as intelligent actions.
This special issue presents the latest development in statistical inference,
machine learning and optimum control for precision farming.
- Abstract(参考訳): 精密農業は、2050年までに現在の農地における農作物の世界の需要を70%増加させ、肥料や水資源の効率的な利用を減らした。
精密農業の出現の触媒は、衛星測位と航法、続いてインターネット・オブ・シングであり、農業プロセスをリアルタイムで最適化するために使用できる膨大な情報を生み出している。
データマイニング、予測モデリング、機械学習といった統計ツールは、過去のデータにおけるパターンを分析し、将来の出来事とインテリジェントなアクションに関する予測を行う。
本特集は, 統計的推論, 機械学習, 精密農業における最適制御の最新の展開を示すものである。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
デジタル農業は、食料、食料、繊維、燃料の需要の増加に対応するために急速に発展している。
デジタル農業における機械学習の研究は、主にモデル中心のアプローチに焦点を当てている。
デジタル農業の可能性を完全に実現するためには、この分野におけるデータの役割を包括的に理解することが不可欠である。
論文 参考訳(メタデータ) (2023-12-06T11:38:26Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
農業におけるリモートセンシングと機械学習の統合は、業界を変えつつある。
本稿では、作物収量予測にRS、ML、クラウドコンピューティング、IoTを使用した関連記事についてレビューする。
論文 参考訳(メタデータ) (2023-06-07T16:13:16Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Towards a Multimodal System for Precision Agriculture using IoT and
Machine Learning [0.5249805590164902]
データ収集のためのIoT(Internet of Things)や、作物の損傷予測のための機械学習、作物の病気検出のためのディープラーニングといった技術が使用されている。
作物の被害予測には、ランダムフォレスト(RF)、光勾配昇降機(LGBM)、XGBoost(XGB)、決定木(DT)、K Nearest Neighbor(KNN)などのアルゴリズムが用いられている。
VGG16、Resnet50、DenseNet121といった事前学習された畳み込みニューラルネットワーク(CNN)モデルも、作物が何らかの病気で汚染されているかどうかを確認するために訓練されている。
論文 参考訳(メタデータ) (2021-07-10T19:19:45Z) - High-resolution global irrigation prediction with Sentinel-2 30m data [0.8137198664755597]
地球規模の灌水利用の正確かつ正確な理解は、様々な気候科学の取り組みに不可欠である。
我々は,世界中の農地の30万分解能灌水予測を生成するために,新しい灌水モデルとpythonパッケージ(irrigation30)を開発した。
本モデルでは, ランダムにサンプリングされた小標本群において, 97%以上の一貫性スコアと92%の精度を達成できた。
論文 参考訳(メタデータ) (2020-12-09T17:26:43Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Crop Knowledge Discovery Based on Agricultural Big Data Integration [2.597676155371155]
農業データは、IoT(Internet of Thing)、センサー、衛星、気象観測所、ロボット、農業機器、農業実験所、農家、政府機関、農業機関など、さまざまなソースを通じて生成される。
本稿では,他のデータセットやビッグデータモデルを組み込むのに十分なフレキシブルなコンステレーションスキーマを用いた農業データ統合手法を提案する。
論文 参考訳(メタデータ) (2020-03-11T00:13:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。