論文の概要: Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection
- arxiv url: http://arxiv.org/abs/2407.04381v1
- Date: Fri, 5 Jul 2024 09:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:00:01.985774
- Title: Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection
- Title(参考訳): 高精度物体検出のための再パラメータ化ヘテロジニアス畳み込み型マルチブランチ補助核融合
- Authors: Zhiqiang Yang, Qiu Guan, Keer Zhao, Jianmin Yang, Xinli Xu, Haixia Long, Ying Tang,
- Abstract要約: 本稿では,MAF-YOLOという新しいモデルを提案する。
Multi-Branch Auxiliary FPN (MAFPN) という名前の汎用ネックを持つ新しいオブジェクト検出フレームワークである。
例えばMAF-YOLOのナノバージョンを使用すれば、3.76Mの学習可能なパラメータと10.51GのFLOPでCOCO上の42.4%のAPを達成でき、YOLOv8nを約5.1%上回る。
- 参考スコア(独自算出の注目度): 3.7793767915135295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the effective performance of multi-scale feature fusion, Path Aggregation FPN (PAFPN) is widely employed in YOLO detectors. However, it cannot efficiently and adaptively integrate high-level semantic information with low-level spatial information simultaneously. We propose a new model named MAF-YOLO in this paper, which is a novel object detection framework with a versatile neck named Multi-Branch Auxiliary FPN (MAFPN). Within MAFPN, the Superficial Assisted Fusion (SAF) module is designed to combine the output of the backbone with the neck, preserving an optimal level of shallow information to facilitate subsequent learning. Meanwhile, the Advanced Assisted Fusion (AAF) module deeply embedded within the neck conveys a more diverse range of gradient information to the output layer. Furthermore, our proposed Re-parameterized Heterogeneous Efficient Layer Aggregation Network (RepHELAN) module ensures that both the overall model architecture and convolutional design embrace the utilization of heterogeneous large convolution kernels. Therefore, this guarantees the preservation of information related to small targets while simultaneously achieving the multi-scale receptive field. Finally, taking the nano version of MAF-YOLO for example, it can achieve 42.4% AP on COCO with only 3.76M learnable parameters and 10.51G FLOPs, and approximately outperforms YOLOv8n by about 5.1%. The source code of this work is available at: https://github.com/yang-0201/MAF-YOLO.
- Abstract(参考訳): マルチスケール機能融合の有効な性能のため、PAFPN(Path Aggregation FPN)はYOLO検出器に広く用いられている。
しかし,高レベルの意味情報と低レベルの空間情報とを同時に効率的に,かつ適応的に統合することはできない。
本稿では,多分岐補助FPN(Multi-Branch Auxiliary FPN,MAFPN)という,多機能ネックを持つ新しいオブジェクト検出フレームワークであるMAF-YOLOを提案する。
MAFPN内では、SAFモジュールは、バックボーンの出力とネックの出力を結合するように設計されており、学習を促進するために最適な浅層情報を保持する。
一方、AAF(Advanced Assisted Fusion)モジュールは、より多様な勾配情報を出力層に伝達する。
さらに,提案したRe-parameterized Heterogeneous Efficient Layer Aggregation Network (RepHELAN)モジュールは,モデルアーキテクチャ全体と畳み込み設計の両方が異種大規模畳み込みカーネルの利用を確実にする。
これにより、マルチスケールの受容領域を同時に達成しつつ、小さなターゲットに関する情報の保存が保証される。
最後に、MAF-YOLOのナノバージョンを例にとると、3.76Mの学習可能なパラメータと10.51GのFLOPでCOCO上の42.4%のAPを達成でき、YOLOv8nを約5.1%上回る。
この作業のソースコードは、https://github.com/yang-0201/MAF-YOLOで公開されている。
関連論文リスト
- FA-YOLO: Research On Efficient Feature Selection YOLO Improved Algorithm Based On FMDS and AGMF Modules [0.6047429555885261]
本稿では,FMDSモジュールと適応Gated Multi-branch Focus Fusion Module (AGMFモジュール)を提案する。
FMDSモジュールは、より効率的な動的特徴選択と融合法を、より微細なマルチスケール特徴写像に適用する。
AGMFモジュールは、複数の並列ブランチを使用して、ゲートユニットブランチ、FMDSモジュールブランチ、トリプルトブランチによってキャプチャされた様々な機能の補完的な融合を実行する。
論文 参考訳(メタデータ) (2024-08-29T07:22:16Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - mAPm: multi-scale Attention Pyramid module for Enhanced scale-variation
in RLD detection [0.3499870393443268]
mAPmは、拡張畳み込みをFPN(Feature Pyramid Network)に統合し、マルチスケール情報抽出を強化する新しいアプローチである。
MRLDおよびCOCOデータセットを用いて, YOLOv7上のmAPmを評価する。
論文 参考訳(メタデータ) (2024-02-26T04:18:42Z) - ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation [6.502259209532815]
ASF-YOLO(Attentional Scale Sequence Fusion based You Only Look Once)フレームワークを提案する。
空間的およびスケール的な特徴を組み合わせて、正確で高速なセルインスタンスのセグメンテーションを行う。
ボックスmAPは0.91、マスクmAPは0.887、推論速度は2018 Data Science Bowlのデータセットで47.3 FPSである。
論文 参考訳(メタデータ) (2023-12-11T15:47:12Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
画像融合のための新しい相互誘導動的ネットワーク(MGDN)を提案する。
5つのベンチマークデータセットによる実験結果から,提案手法は4つの画像融合タスクにおいて既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T03:50:37Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの仕事は、他のYOLOモデルのプラグイン・アンド・プレイ・モジュールとしても使えます。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
MLF-DETと呼ばれる,高性能なクロスモーダル3DオブジェクトDrectionのための,新規かつ効果的なマルチレベルフュージョンネットワークを提案する。
特徴レベルの融合では、マルチスケールのボクセル特徴と画像の特徴を密集したマルチスケールのボクセル画像融合(MVI)モジュールを提示する。
本稿では,画像のセマンティクスを利用して検出候補の信頼度を補正するFCR(Feature-cued Confidence Rectification)モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:26:02Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
カモフラージュされたオブジェクト検出(COD)は、環境に埋め込まれたカモフラージュされたオブジェクトを検出し、分離することを目的としている。
いくつかのCOD法が開発されているが, 前景オブジェクトと背景環境との固有の類似性により, 依然として不満足な性能に悩まされている。
カモフラージュされた物体検出のための新しい特徴集約・伝播ネットワーク(FAP-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:54:28Z) - DAMO-YOLO : A Report on Real-Time Object Detection Design [19.06518351354291]
本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
我々は最大エントロピーの原理で導かれるMAE-NASを用いて検出バックボーンを探索する。
「首と首のデザインでは、大首と小首の規則に従っている。」
論文 参考訳(メタデータ) (2022-11-23T17:59:12Z) - Multi-scale Feature Aggregation for Crowd Counting [84.45773306711747]
マルチスケール特徴集約ネットワーク(MSFANet)を提案する。
MSFANetは、ショートアグリゲーション(ShortAgg)とスキップアグリゲーション(SkipAgg)の2つの機能アグリゲーションモジュールで構成されている。
論文 参考訳(メタデータ) (2022-08-10T10:23:12Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。