論文の概要: DAMO-YOLO : A Report on Real-Time Object Detection Design
- arxiv url: http://arxiv.org/abs/2211.15444v4
- Date: Mon, 24 Apr 2023 03:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 23:20:20.633446
- Title: DAMO-YOLO : A Report on Real-Time Object Detection Design
- Title(参考訳): DAMO-YOLO : リアルタイム物体検出設計報告
- Authors: Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, Xiuyu
Sun
- Abstract要約: 本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
我々は最大エントロピーの原理で導かれるMAE-NASを用いて検出バックボーンを探索する。
「首と首のデザインでは、大首と小首の規則に従っている。」
- 参考スコア(独自算出の注目度): 19.06518351354291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this report, we present a fast and accurate object detection method dubbed
DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO
series. DAMO-YOLO is extended from YOLO with some new technologies, including
Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN
(RepGFPN), a lightweight head with AlignedOTA label assignment, and
distillation enhancement. In particular, we use MAE-NAS, a method guided by the
principle of maximum entropy, to search our detection backbone under the
constraints of low latency and high performance, producing ResNet/CSP-like
structures with spatial pyramid pooling and focus modules. In the design of
necks and heads, we follow the rule of ``large neck, small head''.We import
Generalized-FPN with accelerated queen-fusion to build the detector neck and
upgrade its CSPNet with efficient layer aggregation networks (ELAN) and
reparameterization. Then we investigate how detector head size affects
detection performance and find that a heavy neck with only one task projection
layer would yield better results.In addition, AlignedOTA is proposed to solve
the misalignment problem in label assignment. And a distillation schema is
introduced to improve performance to a higher level. Based on these new techs,
we build a suite of models at various scales to meet the needs of different
scenarios. For general industry requirements, we propose DAMO-YOLO-T/S/M/L.
They can achieve 43.6/47.7/50.2/51.9 mAPs on COCO with the latency of
2.78/3.83/5.62/7.95 ms on T4 GPUs respectively. Additionally, for edge devices
with limited computing power, we have also proposed DAMO-YOLO-Ns/Nm/Nl
lightweight models. They can achieve 32.3/38.2/40.5 mAPs on COCO with the
latency of 4.08/5.05/6.69 ms on X86-CPU. Our proposed general and lightweight
models have outperformed other YOLO series models in their respective
application scenarios.
- Abstract(参考訳): 本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
DAMO-YOLOは、Neural Architecture Search (NAS)、効率的なReparameterized Generalized-FPN (RepGFPN)、AlignedOTAラベルを割り当てた軽量ヘッド、蒸留強化など、YOLOから拡張されている。
特に、最大エントロピーの原理を導いたmae-nasを用いて、低レイテンシと高性能の制約下で検出バックボーンを探索し、空間ピラミッドプールとフォーカスモジュールを備えたresnet/cspライクな構造を生成する。
首と頭の設計では、「大首、小頭」という規則に従っている。
我々は,加速queen-fusionでgeneralized-fpnをインポートして検出器ネックを構築し,効率的な層凝集ネットワーク(elan)と再パラメータ化によりcspnetをアップグレードする。
次に, 検出ヘッドサイズが検出性能にどのように影響するかを調査し, 1つのタスクプロジェクション層のみを持つ重いネックがより良い結果をもたらすことを確認し, さらにラベル割り当てにおける不正調整問題を解くためにAlignedOTAを提案する。
また, 蒸留方式を導入し, 高い性能向上を図る。
これらの新しい技術に基づいて、さまざまなシナリオのニーズを満たすために、さまざまなスケールのモデルスイートを構築します。
一般産業要件として,DAMO-YOLO-T/S/M/Lを提案する。
彼らはそれぞれT4 GPU上で2.78/3.83/5.62/7.95msのレイテンシで、COCO上で43.6/47.7/50.2/51.9mAPを達成できる。
また,計算能力に限界があるエッジデバイスに対しては,DAMO-YOLO-Ns/Nm/Nl軽量モデルも提案している。
彼らは、X86-CPU上で4.08/5.05/6.69msのレイテンシで、COCO上で32.3/38.2/40.5mAPを達成できる。
提案する汎用モデルと軽量モデルは,アプリケーションシナリオにおいて,他のYOLOシリーズモデルよりも優れている。
関連論文リスト
- Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection [3.7793767915135295]
本稿では,MAF-YOLOという新しいモデルを提案する。
Multi-Branch Auxiliary FPN (MAFPN) という名前の汎用ネックを持つ新しいオブジェクト検出フレームワークである。
例えばMAF-YOLOのナノバージョンを使用すれば、3.76Mの学習可能なパラメータと10.51GのFLOPでCOCO上の42.4%のAPを達成でき、YOLOv8nを約5.1%上回る。
論文 参考訳(メタデータ) (2024-07-05T09:35:30Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
FLOPに基づく効率的な物体検出のためのニューラルネットワークアーキテクチャの設計選択に着目する。
そこで本研究では,YOLOモデルの有効性を高めるために,いくつかの最適化手法を提案する。
本稿では、オブジェクト検出のための新しいスケーリングパラダイムと、LeYOLOと呼ばれるYOLO中心のモデルに寄与する。
論文 参考訳(メタデータ) (2024-06-20T12:08:24Z) - Mamba YOLO: SSMs-Based YOLO For Object Detection [9.879086222226617]
Mamba-YOLOはステートスペースモデルに基づく新しい物体検出モデルである。
本報告では,マンバヨロが既存のYOLOシリーズモデルを上回る性能と競争性を示す。
論文 参考訳(メタデータ) (2024-06-09T15:56:19Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
この作業は、超低レイテンシアプリケーションのために、最先端のオブジェクト検出モデルをFPGAデバイスにデプロイする際の課題に対処する。
YOLOアクセラレータにはストリーミングアーキテクチャ設計を採用しており、チップ上で完全なモデルを深くパイプライン化して実装しています。
データフロー方式でYOLOモデルの動作をサポートする新しいハードウェアコンポーネントを導入し、オンチップメモリリソースの制限に対処するために、オフチップメモリバッファリングを導入する。
論文 参考訳(メタデータ) (2023-09-04T13:15:01Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの仕事は、他のYOLOモデルのプラグイン・アンド・プレイ・モジュールとしても使えます。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。