論文の概要: Evaluating the Effectiveness of Attack-Agnostic Features for Morphing Attack Detection
- arxiv url: http://arxiv.org/abs/2410.16802v1
- Date: Tue, 22 Oct 2024 08:27:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:24.722963
- Title: Evaluating the Effectiveness of Attack-Agnostic Features for Morphing Attack Detection
- Title(参考訳): モーフィング攻撃検出における攻撃非依存的特徴の有効性の評価
- Authors: Laurent Colbois, Sébastien Marcel,
- Abstract要約: モーフィング攻撃検出(MAD)における画像表現の可能性について検討する。
ガウス混合モデル(GMM)によるボナフィド特性の分布をモデル化し,抽出した特徴量と一級検出値に基づいて単純な2次線形SVMを訓練し,教師付き検出器を開発する。
以上の結果から,攻撃非依存の特徴は,ほとんどのシナリオにおいて従来の教師付き・一級検知器よりも優れた形態的攻撃を効果的に検出できることが示唆された。
- 参考スコア(独自算出の注目度): 20.67964977754179
- License:
- Abstract: Morphing attacks have diversified significantly over the past years, with new methods based on generative adversarial networks (GANs) and diffusion models posing substantial threats to face recognition systems. Recent research has demonstrated the effectiveness of features extracted from large vision models pretrained on bonafide data only (attack-agnostic features) for detecting deep generative images. Building on this, we investigate the potential of these image representations for morphing attack detection (MAD). We develop supervised detectors by training a simple binary linear SVM on the extracted features and one-class detectors by modeling the distribution of bonafide features with a Gaussian Mixture Model (GMM). Our method is evaluated across a comprehensive set of attacks and various scenarios, including generalization to unseen attacks, different source datasets, and print-scan data. Our results indicate that attack-agnostic features can effectively detect morphing attacks, outperforming traditional supervised and one-class detectors from the literature in most scenarios. Additionally, we provide insights into the strengths and limitations of each considered representation and discuss potential future research directions to further enhance the robustness and generalizability of our approach.
- Abstract(参考訳): モーフィング攻撃は、GAN(Generative Adversarial Network)に基づく新しい手法と、顔認識システムに重大な脅威をもたらす拡散モデルにより、ここ数年で大きく多様化してきた。
近年の研究では、ボナフィドデータのみに事前訓練した大型視覚モデルから抽出した特徴(アタック・アノスティックな特徴)が、深部生成画像の検出に有効であることが示されている。
そこで本研究では,これらの画像表現の可能性について検討した。
ガウス混合モデル (GMM) を用いて, ボナフィド特性の分布をモデル化し, 抽出した特徴量と一級検出値に基づいて単純な2次線形SVMを訓練し, 教師付き検出器を開発する。
本手法は,未確認攻撃への一般化,異なるソースデータセット,印刷スキャンデータなど,包括的攻撃と様々なシナリオで評価される。
以上の結果から,攻撃非依存の特徴は,ほとんどのシナリオにおいて従来の教師付き・一級検知器よりも優れた形態的攻撃を効果的に検出できることが示唆された。
さらに,検討された各表現の強みや限界についての洞察を提供し,今後の研究の方向性を議論し,我々のアプローチの堅牢性と一般化性をさらに向上させる。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T09:37:16Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Detecting Adversarial Data via Perturbation Forgery [28.637963515748456]
逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布の摂動,スパースマスク生成,擬似対向データ生成を含む摂動フォージェリを提案し,未知の勾配に基づく,生成モデルに基づく,物理的対向攻撃を検出することができる対向検出器を訓練する。
論文 参考訳(メタデータ) (2024-05-25T13:34:16Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - MEAOD: Model Extraction Attack against Object Detectors [45.817537875368956]
モデル抽出攻撃は、攻撃者が被害者モデルに匹敵する機能を持つ代替モデルを複製することを可能にする。
本稿では,オブジェクト検出モデルに対するMEAODと呼ばれる効果的な攻撃手法を提案する。
10kのクエリ予算の所定の条件下で,抽出性能を70%以上達成する。
論文 参考訳(メタデータ) (2023-12-22T13:28:50Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
一般化性を重視したIoTネットワーク攻撃をモデル化するアプローチを提案する。
まず,機能抽出のための転がり窓のアプローチを改良し,オーバーフィッティングを低減した多段階機能選択プロセスを提案する。
次に、独立したトレインとテストデータセットを使用してモデルを構築し、テストする。
第3に、機械学習モデル、評価指標、データセットの多様なポートフォリオを使用して、方法論を厳格に評価する。
論文 参考訳(メタデータ) (2023-10-17T21:46:43Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Robust Ensemble Morph Detection with Domain Generalization [23.026167387128933]
我々は,多種多様な形態素攻撃への高一般化と,異なる敵攻撃に対する強靭性を有する形態素検出モデルを学習する。
本研究の目的は,畳み込みニューラルネットワーク(CNN)とトランスフォーマーモデルのアンサンブルを同時に構築することである。
提案したロバストアンサンブルモデルがいくつかのモーフィング攻撃や顔データセットに一般化されることを示す。
論文 参考訳(メタデータ) (2022-09-16T19:00:57Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。