論文の概要: Discovering symbolic expressions with parallelized tree search
- arxiv url: http://arxiv.org/abs/2407.04405v1
- Date: Fri, 5 Jul 2024 10:41:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:50:07.547824
- Title: Discovering symbolic expressions with parallelized tree search
- Title(参考訳): 並列木探索による記号表現の発見
- Authors: Kai Ruan, Ze-Feng Gao, Yike Guo, Hao Sun, Ji-Rong Wen, Yang Liu,
- Abstract要約: 記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは、複雑性の問題に対処する際の精度と効率の重要なボトルネックに直面してきた。
本稿では,限定データから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
- 参考スコア(独自算出の注目度): 59.92040079807524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
- Abstract(参考訳): 記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、現代の科学研究において重要な役割を担っている。
大きな課題は、訓練データに適合する一方で、無限の探索空間において、同相で一般化可能な数学的公式の厳密な探索にある。
既存のアルゴリズムは、複雑性の問題を扱う際に10年以上にわたって正確性と効率性の重大なボトルネックに直面してきた。
そこで本研究では,限られたデータから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
80以上の合成および実験データセット上での最先端のベースラインモデル(例えば、最大99%の精度向上と1桁の階数高速化)を大幅に上回る、方程式探索のためのPTSの精度と効率を実証した。
PTSは、記号的、解釈可能なモデル(例えば、基礎となる物理法則)の正確で効率的なデータ駆動型発見において重要な進歩であり、スケーラブルな記号学習への重要な転換点である。
関連論文リスト
- An Efficient and Generalizable Symbolic Regression Method for Time Series Analysis [13.530431636528519]
時系列に対する textbfNeural-textbfEnhanced textbfMonte-Carlo textbfTree textbfSearch (NEMoTS) を提案する。
NEMoTSはシンボリックレグレッションにおいて検索空間を大幅に削減し、表現品質を向上させる。
3つの実世界のデータセットによる実験は、NEMoTSがパフォーマンス、効率、信頼性、解釈可能性において大きな優位性を示している。
論文 参考訳(メタデータ) (2024-09-06T02:20:13Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Accelerating Understanding of Scientific Experiments with End to End
Symbolic Regression [12.008215939224382]
生データから自由形記号表現を学習する問題に対処するディープニューラルネットワークを開発した。
ニューラルネットワークを、長さの異なるデータテーブルとノイズのレベルからなる合成データセットでトレーニングする。
行動科学の公開データセット上で動作させることで、我々の技術を検証する。
論文 参考訳(メタデータ) (2021-12-07T22:28:53Z) - Modeling Item Response Theory with Stochastic Variational Inference [8.369065078321215]
項目応答理論(IRT)のための変分ベイズ推論アルゴリズムを提案する。
この手法を5つの大規模項目応答データセットに適用すると、欠落したデータを出力する際の高いログ可能性と高い精度が得られる。
アルゴリズムの実装はオープンソースであり、簡単に利用できる。
論文 参考訳(メタデータ) (2021-08-26T05:00:27Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - SymbolicGPT: A Generative Transformer Model for Symbolic Regression [3.685455441300801]
シンボル回帰のための新しいトランスフォーマーベース言語モデルであるSybolicGPTを提案する。
本モデルでは,精度,実行時間,データ効率に関して,競合モデルと比較して高い性能を示す。
論文 参考訳(メタデータ) (2021-06-27T03:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。