論文の概要: Wavelet-based Temporal Attention Improves Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2407.04440v1
- Date: Fri, 5 Jul 2024 11:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:40:23.413611
- Title: Wavelet-based Temporal Attention Improves Traffic Forecasting
- Title(参考訳): ウェーブレットに基づく時間的注意が交通予測を改善する
- Authors: Yash Jakhmola, Nitish Kumar Mishra, Kripabandhu Ghosh, Tanujit Chakraborty,
- Abstract要約: 交通フローデータの予測は、機械学習の分野で典型的な問題であり、都市交通管理システムに影響を及ぼす。
従来の統計的および機械学習手法は、これらの複雑なトラフィックフローデータセットにおける時間的および空間的依存関係を適切に扱えない。
本稿では,ウェーブレットに基づく動的処理時間対応グラフニューラルネットワーク(WDSNN)を提案する。
我々のアンサンブル・データ駆動方式は動的時間的・空間的依存や時間的予測を効率的に処理できる。
- 参考スコア(独自算出の注目度): 3.131352561462676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatio-temporal forecasting of traffic flow data represents a typical problem in the field of machine learning, impacting urban traffic management systems. Traditional statistical and machine learning methods cannot adequately handle both the temporal and spatial dependencies in these complex traffic flow datasets. A prevalent approach in the field is to combine graph convolutional networks and multi-head attention mechanisms for spatio-temporal processing. This paper proposes a wavelet-based temporal attention model, namely a wavelet-based dynamic spatio-temporal aware graph neural network (W-DSTAGNN), for tackling the traffic forecasting problem. Benchmark experiments using several statistical metrics confirm that our proposal efficiently captures spatio-temporal correlations and outperforms ten state-of-the-art models on three different real-world traffic datasets. Our proposed ensemble data-driven method can handle dynamic temporal and spatial dependencies and make long-term forecasts in an efficient manner.
- Abstract(参考訳): 交通フローデータの時空間予測は、機械学習の分野で典型的な問題であり、都市交通管理システムに影響を及ぼす。
従来の統計的および機械学習手法は、これらの複雑なトラフィックフローデータセットにおける時間的および空間的依存関係を適切に扱えない。
この分野で一般的なアプローチは、グラフ畳み込みネットワークと時空間処理のためのマルチヘッドアテンション機構を組み合わせることである。
本稿では,ウェーブレットに基づく動的時空間対応グラフニューラルネットワーク(W-DSTAGNN)を提案する。
いくつかの統計指標を用いたベンチマーク実験により,提案手法は時空間相関を効率よく把握し,実世界の3つのトラフィックデータセット上で10の最先端モデルより優れていることを確認した。
提案手法は,時間的・空間的依存を動的に処理し,長期予測を効率的に行うことができる。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
交通流予測のためのマルチスケール時空間リカレントネットワーク(MSSTRN)を提案する。
本研究では,適応的な位置グラフの畳み込みを自己認識機構に統合し,空間的時間的依存関係の同時捕捉を実現する空間的時間的同期的注意機構を提案する。
本モデルは,全20基準法と比較して,非自明なマージンで最高の予測精度を実現する。
論文 参考訳(メタデータ) (2023-10-12T08:52:36Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。