Using LLMs to label medical papers according to the CIViC evidence model
- URL: http://arxiv.org/abs/2407.04466v1
- Date: Fri, 5 Jul 2024 12:30:01 GMT
- Title: Using LLMs to label medical papers according to the CIViC evidence model
- Authors: Markus Hisch, Xing David Wang,
- Abstract summary: We introduce the sequence classification problem CIViC Evidence to the field of medical NLP.
We fine-tune pretrained checkpoints of BERT and RoBERTa on the CIViC Evidence dataset.
We compare the aforementioned BERT-like models to OpenAI's GPT-4 in a few-shot setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the sequence classification problem CIViC Evidence to the field of medical NLP. CIViC Evidence denotes the multi-label classification problem of assigning labels of clinical evidence to abstracts of scientific papers which have examined various combinations of genomic variants, cancer types, and treatment approaches. We approach CIViC Evidence using different language models: We fine-tune pretrained checkpoints of BERT and RoBERTa on the CIViC Evidence dataset and challenge their performance with models of the same architecture which have been pretrained on domain-specific text. In this context, we find that BiomedBERT and BioLinkBERT can outperform BERT on CIViC Evidence (+0.8% and +0.9% absolute improvement in class-support weighted F1 score). All transformer-based models show a clear performance edge when compared to a logistic regression trained on bigram tf-idf scores (+1.5 - 2.7% improved F1 score). We compare the aforementioned BERT-like models to OpenAI's GPT-4 in a few-shot setting (on a small subset of our original test dataset), demonstrating that, without additional prompt-engineering or fine-tuning, GPT-4 performs worse on CIViC Evidence than our six fine-tuned models (66.1% weighted F1 score compared to 71.8% for the best fine-tuned model). However, performance gets reasonably close to the benchmark of a logistic regression model trained on bigram tf-idf scores (67.7% weighted F1 score).
Related papers
- LT4SG@SMM4H24: Tweets Classification for Digital Epidemiology of Childhood Health Outcomes Using Pre-Trained Language Models [1.0312118123538199]
This paper presents our approaches for the SMM4H24 Shared Task 5 on the binary classification of English tweets reporting children's medical disorders.
Our best-performing system achieves an F1-score of 0.938 on test data, outperforming the benchmark by 1.18%.
arXiv Detail & Related papers (2024-06-11T22:48:18Z) - Low-resource classification of mobility functioning information in
clinical sentences using large language models [0.0]
This study evaluates the ability of publicly available large language models (LLMs) to accurately identify the presence of functioning information from clinical notes.
We collect a balanced binary classification dataset of 1000 sentences from the Mobility NER dataset, which was curated from n2c2 clinical notes.
arXiv Detail & Related papers (2023-12-15T20:59:17Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - Large Language Models to Identify Social Determinants of Health in
Electronic Health Records [2.168737004368243]
Social determinants of health (SDoH) have an important impact on patient outcomes but are incompletely collected from the electronic health records (EHRs)
This study researched the ability of large language models to extract SDoH from free text in EHRs, where they are most commonly documented.
800 patient notes were annotated for SDoH categories, and several transformer-based models were evaluated.
arXiv Detail & Related papers (2023-08-11T19:18:35Z) - Exploring the Value of Pre-trained Language Models for Clinical Named
Entity Recognition [6.917786124918387]
We compare Transformer models that are trained from scratch to fine-tuned BERT-based LLMs.
We examine the impact of an additional CRF layer on such models to encourage contextual learning.
arXiv Detail & Related papers (2022-10-23T16:27:31Z) - Text Mining Drug/Chemical-Protein Interactions using an Ensemble of BERT
and T5 Based Models [3.7462395049372894]
In Track-1 of the BioCreative VII Challenge participants are asked to identify interactions between drugs/chemicals and proteins.
We attempt both a BERT-based sentence classification approach, and a more novel text-to-text approach using a T5 model.
arXiv Detail & Related papers (2021-11-30T18:14:06Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - TACRED Revisited: A Thorough Evaluation of the TACRED Relation
Extraction Task [80.38130122127882]
TACRED is one of the largest, most widely used crowdsourced datasets in Relation Extraction (RE)
In this paper, we investigate the questions: Have we reached a performance ceiling or is there still room for improvement?
We find that label errors account for 8% absolute F1 test error, and that more than 50% of the examples need to be relabeled.
arXiv Detail & Related papers (2020-04-30T15:07:37Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.