論文の概要: Optimizing the image correction pipeline for pedestrian detection in the thermal-infrared domain
- arxiv url: http://arxiv.org/abs/2407.04484v1
- Date: Fri, 5 Jul 2024 13:07:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:30:37.813017
- Title: Optimizing the image correction pipeline for pedestrian detection in the thermal-infrared domain
- Title(参考訳): 熱赤外領域における歩行者検出のための画像補正パイプラインの最適化
- Authors: Christophe Karam, Jessy Matias, Xavier Breniere, Jocelyn Chanussot,
- Abstract要約: 赤外線画像は、霧や低照度シナリオのような低視認性状況に役立ちます。
熱雑音の傾向があり、さらなる処理と修正が必要である。
本研究では,異なる赤外線処理パイプラインが都市環境における歩行者検出性能に与える影響について検討した。
- 参考スコア(独自算出の注目度): 15.97485485068461
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Infrared imagery can help in low-visibility situations such as fog and low-light scenarios, but it is prone to thermal noise and requires further processing and correction. This work studies the effect of different infrared processing pipelines on the performance of a pedestrian detection in an urban environment, similar to autonomous driving scenarios. Detection on infrared images is shown to outperform that on visible images, but the infrared correction pipeline is crucial since the models cannot extract information from raw infrared images. Two thermal correction pipelines are studied, the shutter and the shutterless pipes. Experiments show that some correction algorithms like spatial denoising are detrimental to performance even if they increase visual quality for a human observer. Other algorithms like destriping and, to a lesser extent, temporal denoising, increase computational time, but have some role to play in increasing detection accuracy. As it stands, the optimal trade-off for speed and accuracy is simply to use the shutterless pipe with a tonemapping algorithm only, for autonomous driving applications within varied environments.
- Abstract(参考訳): 赤外線画像は霧や低照度のシナリオのような低視認性状況に役立ちうるが、熱雑音にかかりやすいため、さらなる処理と修正が必要である。
本研究では,異なる赤外線処理パイプラインが都市環境における歩行者検出性能に与える影響について検討する。
赤外線画像の検出は、可視画像よりも優れているが、モデルが生の赤外線画像から情報を抽出できないため、赤外線補正パイプラインが不可欠である。
2つの熱補正パイプライン、シャッターとシャッターレスパイプについて検討した。
実験により、人間の観察者にとって視覚的品質が向上しても、空間認知のような補正アルゴリズムは性能に有害であることが示された。
切り離しや時間分解のような他のアルゴリズムは、計算時間を増加させるが、検出精度を高めるためにいくつかの役割を担っている。
現状では、スピードと正確性のための最適なトレードオフは、トネマッピングアルゴリズムのみを備えたシャッターレスパイプを、様々な環境における自動運転アプリケーションに使用することだ。
関連論文リスト
- Make Explicit Calibration Implicit: Calibrate Denoiser Instead of the
Noise Model [83.9497193551511]
デジタルゲインやカメラセンサーによらず有効であるLED(Lighting Every Darkness)を導入する。
LEDは明示的なノイズモデルのキャリブレーションの必要性を排除し、高速な展開と最小限のデータを必要とする暗黙の微調整プロセスを活用する。
LEDは、センサー工学の利点を生かしながら、ディープラーニングの進歩にもっと注力することを可能にする。
論文 参考訳(メタデータ) (2023-08-07T10:09:11Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
従来の芸術は、主にピクセルワイド・ロスを用いて可視光スペクトルで捉えた低照度画像に焦点を当てていた。
我々は,赤外線カットオフフィルタを除去することにより,低照度環境下で撮影された画像の可視性を高める新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T08:29:19Z) - Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation [97.0195314255101]
逆経路追跡は計算に高価であり、反射と放出の間に曖昧さが存在する。
当社のFactized Inverse Path Tracing (FIPT) は, ファクタリング光輸送の定式化によってこれらの課題に対処する。
提案アルゴリズムは, 従来よりも高精度な材料と照明の最適化を実現し, あいまいさの解消に有効である。
論文 参考訳(メタデータ) (2023-04-12T07:46:05Z) - Breaking Modality Disparity: Harmonized Representation for Infrared and
Visible Image Registration [66.33746403815283]
シーン適応型赤外線と可視画像の登録を提案する。
我々は、異なる平面間の変形をシミュレートするためにホモグラフィーを用いる。
我々は、まず、赤外線と可視画像のデータセットが不一致であることを示す。
論文 参考訳(メタデータ) (2023-04-12T06:49:56Z) - Deep Unfolding for Iterative Stripe Noise Removal [4.756256077972335]
赤外線イメージングシステムの不均一光電応答は、赤外線画像に重畳される固定パターンストライプノイズをもたらす。
既存の画像デストリップ手法は、すべてのストリップノイズアーティファクトを同時に除去し、画像の詳細と構造を保存し、リアルタイムのパフォーマンスのバランスをとるのに苦労する。
本稿では, 劣化画像の除去アルゴリズムを提案する。これは, 近傍のカラム信号相関を利用して, 独立したカラムストライプノイズを除去する。
論文 参考訳(メタデータ) (2022-09-27T02:53:03Z) - Semantic Segmentation for Thermal Images: A Comparative Survey [0.0]
セマンティックセグメンテーションにおける赤外線スペクトルの利用には、自律運転、医療画像、農業、防衛産業など、多くの実世界のユースケースがある。
1つのアプローチは、可視光と赤外線のスペクトル画像の両方を入力として使用することである。
もう1つのアプローチは、熱画像のみを使用することで、より小さなユースケースでハードウェアコストを削減できる。
論文 参考訳(メタデータ) (2022-05-26T11:32:15Z) - Convolutional Deep Denoising Autoencoders for Radio Astronomical Images [0.0]
我々は、最先端の電波望遠鏡の合成画像に、畳み込み復号化オートエンコーダ(Convolutional Denoising Autoencoder)と呼ばれる機械学習技術を適用した。
我々のオートエンコーダは、器用感度の限界でかすかな物体を識別し、抽出する複雑な画像を効果的に識別することができる。
論文 参考訳(メタデータ) (2021-10-16T17:08:30Z) - Comparison of Object Detection Algorithms Using Video and Thermal Images
Collected from a UAS Platform: An Application of Drones in Traffic Management [2.9932638148627104]
本研究では、視覚カメラと赤外線カメラの両方のリアルタイム車両検出アルゴリズムについて検討する。
フロリダ州タンパの高速道路沿いのUASプラットフォームから、レッドグリーンブルー(RGB)のビデオと熱画像が収集された。
論文 参考訳(メタデータ) (2021-09-27T16:57:09Z) - Thermal Image Processing via Physics-Inspired Deep Networks [21.094006629684376]
DeepIRは、物理的に正確なセンサーモデリングとディープネットワークベースのイメージ表現を組み合わせる。
DeepIRは、トレーニングデータや、既知のブラックボディターゲットによる定期的な地平線校正を必要としない。
シミュレーションおよび実データ実験により、DeepIRは3つの画像で高品質な非均一性補正を行うことができることを示した。
論文 参考訳(メタデータ) (2021-08-18T04:57:48Z) - Towards Online Monitoring and Data-driven Control: A Study of
Segmentation Algorithms for Laser Powder Bed Fusion Processes [83.97264034062673]
レーザーパウダーベッド融合機の増加は、オンライン監視とデータ駆動制御能力を改善するためにオフ軸赤外線カメラを使用する。
我々は、各赤外線画像を前景と背景に分割する30以上のセグメンテーションアルゴリズムについて検討する。
同定されたアルゴリズムは、レーザ粉体層融合機に容易に適用でき、上記の各制限に対処し、プロセス制御を大幅に改善することができる。
論文 参考訳(メタデータ) (2020-11-18T03:30:16Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。