論文の概要: Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation
- arxiv url: http://arxiv.org/abs/2304.05669v2
- Date: Wed, 23 Aug 2023 20:52:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 18:01:13.076319
- Title: Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation
- Title(参考訳): 効率良く正確な材料照明推定のための因子化逆経路追跡
- Authors: Liwen Wu, Rui Zhu, Mustafa B. Yaldiz, Yinhao Zhu, Hong Cai, Janarbek
Matai, Fatih Porikli, Tzu-Mao Li, Manmohan Chandraker, Ravi Ramamoorthi
- Abstract要約: 逆経路追跡は計算に高価であり、反射と放出の間に曖昧さが存在する。
当社のFactized Inverse Path Tracing (FIPT) は, ファクタリング光輸送の定式化によってこれらの課題に対処する。
提案アルゴリズムは, 従来よりも高精度な材料と照明の最適化を実現し, あいまいさの解消に有効である。
- 参考スコア(独自算出の注目度): 97.0195314255101
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse path tracing has recently been applied to joint material and lighting
estimation, given geometry and multi-view HDR observations of an indoor scene.
However, it has two major limitations: path tracing is expensive to compute,
and ambiguities exist between reflection and emission. Our Factorized Inverse
Path Tracing (FIPT) addresses these challenges by using a factored light
transport formulation and finds emitters driven by rendering errors. Our
algorithm enables accurate material and lighting optimization faster than
previous work, and is more effective at resolving ambiguities. The exhaustive
experiments on synthetic scenes show that our method (1) outperforms
state-of-the-art indoor inverse rendering and relighting methods particularly
in the presence of complex illumination effects; (2) speeds up inverse path
tracing optimization to less than an hour. We further demonstrate robustness to
noisy inputs through material and lighting estimates that allow plausible
relighting in a real scene. The source code is available at:
https://github.com/lwwu2/fipt
- Abstract(参考訳): 近年,室内シーンの幾何および多視点hdr観測により,複合材料と照明推定に逆経路追跡が適用されている。
しかし、パストレースは計算に高価であり、リフレクションとエミッションの間に曖昧さが存在する。
当社のFactized Inverse Path Tracing (FIPT)は,光輸送の因子式を用いてこれらの課題に対処し,レンダリングエラーによって駆動されるエミッタを見つける。
提案アルゴリズムは,従来よりも高精度な材料と照明の最適化を実現し,あいまいさの解消に有効である。
合成シーンにおける徹底的な実験により,(1)複雑な照明効果の存在下で,最先端の屋内逆レンダリングや照明手法を上回り,(2)逆経路追跡最適化を1時間未満に高速化することを示した。
さらに,実場面で再現可能な材料と照明推定値を用いて,ノイズ入力に対するロバスト性を示す。
ソースコードはhttps://github.com/lwwu2/fiptで入手できる。
関連論文リスト
- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
本稿では,レンダリングに偏りをもたらす近似を回避し,最適化に用いた勾配を求める手法を提案する。
これらのバイアスを除去することで、逆レンダリングに基づくレーダランスキャッシュの一般化が向上し、スペクトル反射のような光輸送効果に挑戦する際の品質が向上することを示す。
論文 参考訳(メタデータ) (2024-09-09T17:59:57Z) - MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling [17.435649250309904]
本稿では,新しい2段階逆レンダリングフレームワークであるMIRReSを紹介する。
提案手法は, ステージ1で明示的な幾何(三角形メッシュ)を抽出し, より現実的な物理ベースの逆レンダリングモデルを導入する。
本手法は,自己陰影や内部反射を含む間接照明を効果的に推定する。
論文 参考訳(メタデータ) (2024-06-24T07:00:57Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
逆レンダリング手法は、多視点RGB画像から幾何学、材料、照明を推定することを目的としている。
本稿では,多視点画像から材料と照明を分解するエンドツーエンドの逆レンダリングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-29T12:05:19Z) - Modeling Indirect Illumination for Inverse Rendering [31.734819333921642]
本稿では,空間的に変化する間接照明を効率よく回収するための新しい手法を提案する。
重要な洞察は、間接照明は入力画像から学習した神経放射場から便利に導出できるということである。
合成データと実データの両方の実験は、従来の研究と比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2022-04-14T09:10:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
微分可能幾何計算は画像に基づく逆問題に対する関心が高まっている。
微分可能な可視性とソフトシャドウ計算のための効率的かつ効率的なアプローチを提案する。
定式化は微分可能であるため, テクスチャ, 照明, 剛体ポーズ, 画像からの変形回復などの逆問題を解くために使用できる。
論文 参考訳(メタデータ) (2021-04-01T09:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。