Graph Reinforcement Learning for Power Grids: A Comprehensive Survey
- URL: http://arxiv.org/abs/2407.04522v3
- Date: Mon, 26 Aug 2024 15:13:22 GMT
- Title: Graph Reinforcement Learning for Power Grids: A Comprehensive Survey
- Authors: Mohamed Hassouna, Clara Holzhüter, Pawel Lytaev, Josephine Thomas, Bernhard Sick, Christoph Scholz,
- Abstract summary: The rise of renewable energy and distributed generation requires new approaches to overcome the limitations of traditional methods.
Graph Neural Networks are promising due to their ability to learn from graph-structured data.
This review analyses how Graph Reinforcement Learning can improve representation learning and decision making in power grid use cases.
- Score: 1.3124421498970822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of renewable energy and distributed generation requires new approaches to overcome the limitations of traditional methods. In this context, Graph Neural Networks are promising due to their ability to learn from graph-structured data. Combined with Reinforcement Learning, they can serve as control approaches to determine remedial network actions. This review analyses how Graph Reinforcement Learning (GRL) can improve representation learning and decision making in power grid use cases. Although GRL has demonstrated adaptability to unpredictable events and noisy data, it is primarily at a proof-of-concept stage. We highlight open challenges and limitations with respect to real-world applications.
Related papers
- Disentangled Generative Graph Representation Learning [51.59824683232925]
This paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework.
It aims to learn latent disentangled factors and utilize them to guide graph mask modeling.
Experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods.
arXiv Detail & Related papers (2024-08-24T05:13:02Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - PowerGraph: A power grid benchmark dataset for graph neural networks [7.504044714471332]
We present PowerGraph, which comprises GNN-tailored datasets for power flows, optimal power flows, and cascading failure analyses.
Overall, PowerGraph is a multifaceted GNN dataset for diverse tasks that includes power flow and fault scenarios with real-world explanations.
arXiv Detail & Related papers (2024-02-05T09:24:52Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - Reinforced Continual Learning for Graphs [18.64268861430314]
This paper proposes a graph continual learning strategy that combines the architecture-based and memory-based approaches.
It is numerically validated with several graph continual learning benchmark problems in both task-incremental learning and class-incremental learning settings.
arXiv Detail & Related papers (2022-09-04T07:49:59Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.