Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling
- URL: http://arxiv.org/abs/2407.04525v3
- Date: Tue, 15 Oct 2024 12:51:44 GMT
- Title: Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling
- Authors: Alejandro Rodriguez-Garcia, Jie Mei, Srikanth Ramaswamy,
- Abstract summary: We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
- Score: 52.06722364186432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in artificial intelligence (AI) has been driven by insights from neuroscience, particularly with the development of artificial neural networks (ANNs). This has significantly enhanced the replication of complex cognitive tasks such as vision and natural language processing. Despite these advances, ANNs struggle with continual learning, adaptable knowledge transfer, robustness, and resource efficiency - capabilities that biological systems handle seamlessly. Specifically, ANNs often overlook the functional and morphological diversity of the brain, hindering their computational capabilities. Furthermore, incorporating cell-type specific neuromodulatory effects into ANNs with neuronal heterogeneity could enable learning at two spatial scales: spiking behavior at the neuronal level, and synaptic plasticity at the circuit level, thereby potentially enhancing their learning abilities. In this article, we summarize recent bio-inspired models, learning rules and architectures and propose a biologically-informed framework for enhancing ANNs. Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors and dendritic compartments to simulate morphological and functional diversity of neuronal computations. Finally, we outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, balances bioinspiration and complexity, and provides scalable solutions for pressing AI challenges, such as continual learning, adaptability, robustness, and resource-efficiency.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Research Advances and New Paradigms for Biology-inspired Spiking Neural Networks [8.315801422499861]
Spiking neural networks (SNNs) are gaining popularity in the computational simulation and artificial intelligence fields.
This paper explores the historical development of SNN and concludes that these two fields are intersecting and merging rapidly.
arXiv Detail & Related papers (2024-08-26T03:37:48Z) - Astrocyte-Enabled Advancements in Spiking Neural Networks for Large
Language Modeling [7.863029550014263]
Astrocyte-Modulated Spiking Neural Network (AstroSNN) exhibits exceptional performance in tasks involving memory retention and natural language generation.
AstroSNN shows low latency, high throughput, and reduced memory usage in practical applications.
arXiv Detail & Related papers (2023-12-12T06:56:31Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
We introduce neural connectivity concepts emulating the axo-somatic and the axo-axonic synapses.
We demonstrate for the first time, that a biologically realistic implementation of a large-scale ASR model can yield competitive performance levels.
arXiv Detail & Related papers (2021-10-04T21:24:10Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.