論文の概要: Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates
- arxiv url: http://arxiv.org/abs/2407.04557v1
- Date: Fri, 5 Jul 2024 14:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:10:54.628254
- Title: Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates
- Title(参考訳): 量子材料候補の発見のための生成モデルにおける構造制約の統合
- Authors: Ryotaro Okabe, Mouyang Cheng, Abhijatmedhi Chotrattanapituk, Nguyen Tuan Hung, Xiang Fu, Bowen Han, Yao Wang, Weiwei Xie, Robert J. Cava, Tommi S. Jaakkola, Yongqiang Cheng, Mingda Li,
- Abstract要約: 遺伝子モデル(SCIGEN)における構造制約の統合について紹介する。
プロトタイプの制約としてアルキメデス格子を用いて800万の化合物を生成し, 10%以上の安定性が維持されている。
量子材料の性質は幾何学的パターンと密接に関連しているため、SCIGENは量子材料候補を生成するための一般的な枠組みを提供することを示す。
- 参考スコア(独自算出の注目度): 27.416978540039878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Billions of organic molecules are known, but only a tiny fraction of the functional inorganic materials have been discovered, a particularly relevant problem to the community searching for new quantum materials. Recent advancements in machine-learning-based generative models, particularly diffusion models, show great promise for generating new, stable materials. However, integrating geometric patterns into materials generation remains a challenge. Here, we introduce Structural Constraint Integration in the GENerative model (SCIGEN). Our approach can modify any trained generative diffusion model by strategic masking of the denoised structure with a diffused constrained structure prior to each diffusion step to steer the generation toward constrained outputs. Furthermore, we mathematically prove that SCIGEN effectively performs conditional sampling from the original distribution, which is crucial for generating stable constrained materials. We generate eight million compounds using Archimedean lattices as prototype constraints, with over 10% surviving a multi-staged stability pre-screening. High-throughput density functional theory (DFT) on 26,000 survived compounds shows that over 50% passed structural optimization at the DFT level. Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN provides a general framework for generating quantum materials candidates.
- Abstract(参考訳): 何十億もの有機分子が知られているが、機能的な無機物質のごく一部しか発見されていない。
機械学習に基づく生成モデル(特に拡散モデル)の最近の進歩は、新しい安定した材料を生成する大きな可能性を示している。
しかし、幾何学的パターンを材料生成に統合することは依然として課題である。
本稿では、ジェネレーティブモデル(SCIGEN)における構造制約統合について紹介する。
提案手法は,各拡散ステップに先立って,回折構造を拡散制約構造で戦略的にマスキングすることで,学習した生成拡散モデルを修正し,その生成を制約出力に向けて制御することができる。
さらに,SCIGENは,安定な拘束材料を生成する上で重要な,元の分布からの条件付きサンプリングを効果的に行うことを数学的に証明する。
プロトタイプの制約としてアルキメデス格子を用いて800万の化合物を生成し, 10%以上の安定性が維持されている。
26,000個の生き残った化合物の高スループット密度汎関数理論(DFT)は、50%以上がDFTレベルで構造最適化に合格したことを示している。
量子材料の性質は幾何学的パターンと密接に関連しているため、SCIGENは量子材料候補を生成するための一般的な枠組みを提供することを示す。
関連論文リスト
- DiffMS: Diffusion Generation of Molecules Conditioned on Mass Spectra [60.39311767532607]
DiffMSは式制限エンコーダ-デコーダ生成ネットワークである。
我々は、潜伏埋め込みと分子構造を橋渡しする頑健なデコーダを開発する。
実験の結果、DiffMS は $textitde novo$ 分子生成で既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2025-02-13T18:29:48Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Symmetry-Aware Bayesian Flow Networks for Crystal Generation [0.562479170374811]
結晶生成のための新しい対称性対応ベイズフローネットワーク(BFN)であるSymbBFNを紹介する。
SymmBFNは効率を大幅に改善し、安定な構造を生成する。
結晶性物質の発見を加速するための有効なツールとして,BFNが確立されている。
論文 参考訳(メタデータ) (2025-02-05T13:14:50Z) - Open Materials Generation with Stochastic Interpolants [14.939468363546384]
結晶材料の生成と発見のための統一フレームワークであるオープンマテリアルジェネレーション(OMG)を紹介する。
OMGは、任意の塩基分布を結晶のターゲット分布にブリッジするために無機補間剤(SI)を用いる。
我々は,OMGの特定の構成に対する結晶構造予測(CSP)と,安定で新規でユニークな構造を発見することを目的とした'de novo'生成(DNG)の2つのタスクについて,OMGのパフォーマンスをベンチマークした。
論文 参考訳(メタデータ) (2025-02-04T18:56:47Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
本稿では,拡散モデルと潜時空間ESMの共生を変動学習フレームワークで導入する。
我々は,学習した潜在空間の品質を向上させるために,情報ボトルネックと合わせて幾何学的クラスタリングに基づく正規化を開発する。
論文 参考訳(メタデータ) (2022-06-13T03:41:31Z) - Physics Guided Generative Adversarial Networks for Generations of
Crystal Materials with Symmetry Constraints [9.755053639966185]
新たな材料生成のための物理ガイド結晶生成モデル(PGCGM)を提案する。
物質の塩基性原子サイトを増大させることで、20個の空間群からなる新しい物質を生成できる。
本手法により, 発電機の有効性は, ベースラインの8倍に向上する。
論文 参考訳(メタデータ) (2022-03-27T17:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。