論文の概要: Open Materials Generation with Stochastic Interpolants
- arxiv url: http://arxiv.org/abs/2502.02582v1
- Date: Tue, 04 Feb 2025 18:56:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:11.080224
- Title: Open Materials Generation with Stochastic Interpolants
- Title(参考訳): 確率補間材を用いたオープンマテリアル生成
- Authors: Philipp Hoellmer, Thomas Egg, Maya M. Martirossyan, Eric Fuemmeler, Amit Gupta, Zeren Shui, Pawan Prakash, Adrian Roitberg, Mingjie Liu, George Karypis, Mark Transtrum, Richard G. Hennig, Ellad B. Tadmor, Stefano Martiniani,
- Abstract要約: 結晶材料の生成と発見のための統一フレームワークであるオープンマテリアルジェネレーション(OMG)を紹介する。
OMGは、任意の塩基分布を結晶のターゲット分布にブリッジするために無機補間剤(SI)を用いる。
我々は,OMGの特定の構成に対する結晶構造予測(CSP)と,安定で新規でユニークな構造を発見することを目的とした'de novo'生成(DNG)の2つのタスクについて,OMGのパフォーマンスをベンチマークした。
- 参考スコア(独自算出の注目度): 14.939468363546384
- License:
- Abstract: The discovery of new materials is essential for enabling technological advancements. Computational approaches for predicting novel materials must effectively learn the manifold of stable crystal structures within an infinite design space. We introduce Open Materials Generation (OMG), a unifying framework for the generative design and discovery of inorganic crystalline materials. OMG employs stochastic interpolants (SI) to bridge an arbitrary base distribution to the target distribution of inorganic crystals via a broad class of tunable stochastic processes, encompassing both diffusion models and flow matching as special cases. In this work, we adapt the SI framework by integrating an equivariant graph representation of crystal structures and extending it to account for periodic boundary conditions in unit cell representations. Additionally, we couple the SI flow over spatial coordinates and lattice vectors with discrete flow matching for atomic species. We benchmark OMG's performance on two tasks: Crystal Structure Prediction (CSP) for specified compositions, and 'de novo' generation (DNG) aimed at discovering stable, novel, and unique structures. In our ground-up implementation of OMG, we refine and extend both CSP and DNG metrics compared to previous works. OMG establishes a new state-of-the-art in generative modeling for materials discovery, outperforming purely flow-based and diffusion-based implementations. These results underscore the importance of designing flexible deep learning frameworks to accelerate progress in materials science.
- Abstract(参考訳): 新しい素材の発見は、技術の進歩を可能にするのに不可欠である。
新規材料を予測するための計算的アプローチは、無限の設計空間内で安定な結晶構造の多様体を効果的に学ばなければならない。
無機結晶材料の生成と発見のための統一的な枠組みであるオープンマテリアル生成(OMG)を紹介する。
OMGは任意の塩基分布を無機結晶のターゲット分布に橋渡しするために確率補間剤(SI)を用いており、拡散モデルとフローマッチングの両方を特別な場合として含む。
本研究では、結晶構造の同変グラフ表現を統合し、単位セル表現における周期的境界条件を考慮した拡張により、SIフレームワークを適応する。
さらに,空間座標と格子ベクトル上でのSIフローと,原子種に対する離散フローマッチングを結合する。
我々は,OMGの特定の構成に対する結晶構造予測(CSP)と,安定で新規でユニークな構造を発見することを目的とした'de novo'生成(DNG)の2つのタスクについて,OMGのパフォーマンスをベンチマークした。
我々は,OMGの基盤実装において,従来の研究と比較してCSPとDNGのメトリクスを洗練・拡張する。
OMGは、物質発見のための生成モデリングにおける新しい最先端技術を確立し、純粋にフローベースおよび拡散ベースの実装より優れている。
これらの結果は、材料科学の進歩を加速するために柔軟なディープラーニングフレームワークを設計することの重要性を浮き彫りにしている。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates [27.416978540039878]
遺伝子モデル(SCIGEN)における構造制約の統合について紹介する。
プロトタイプの制約としてアルキメデス格子を用いて800万の化合物を生成し, 10%以上の安定性が維持されている。
量子材料の性質は幾何学的パターンと密接に関連しているため、SCIGENは量子材料候補を生成するための一般的な枠組みを提供することを示す。
論文 参考訳(メタデータ) (2024-07-05T14:42:54Z) - FlowMM: Generating Materials with Riemannian Flow Matching [16.68310253042657]
両タスクの最先端性能を実現するための生成モデルであるFlowMMを提案する。
われわれのフレームワークは,フローベース分布の選択の自由を可能とし,結晶構造学習の問題を劇的に単純化する。
標準ベンチマークに加えて, 量子化学計算によるFlowMMの生成構造を検証した。
論文 参考訳(メタデータ) (2024-06-07T07:46:23Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
本研究は, 化学安定性や化学組成など, 新しい結晶構造を創出することを目的としている。
提案手法の新規性は、結晶細胞の格子が固定されていないという事実にある。
対称性の制約を尊重し、計算上の優位性をもたらす多グラフ結晶表現が導入された。
論文 参考訳(メタデータ) (2023-10-16T02:53:24Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。