論文の概要: Remembering Everything Makes You Vulnerable: A Limelight on Machine Unlearning for Personalized Healthcare Sector
- arxiv url: http://arxiv.org/abs/2407.04589v1
- Date: Fri, 5 Jul 2024 15:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 13:01:09.251718
- Title: Remembering Everything Makes You Vulnerable: A Limelight on Machine Unlearning for Personalized Healthcare Sector
- Title(参考訳): 全てを思い出す: 個人化された医療セクターのための機械学習の要点
- Authors: Ahan Chatterjee, Sai Anirudh Aryasomayajula, Rajat Chaudhari, Subhajit Paul, Vishwa Mohan Singh,
- Abstract要約: この論文は、特にECGモニタリングの文脈において、パーソナライズされた医療モデルの脆弱性に対処することを目的としている。
本稿では,機械学習モデルに対する露出データポイントの影響を軽減するために,"Machine Unlearning" というアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.873811641236639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the prevalence of data-driven technologies in healthcare continues to rise, concerns regarding data privacy and security become increasingly paramount. This thesis aims to address the vulnerability of personalized healthcare models, particularly in the context of ECG monitoring, to adversarial attacks that compromise patient privacy. We propose an approach termed "Machine Unlearning" to mitigate the impact of exposed data points on machine learning models, thereby enhancing model robustness against adversarial attacks while preserving individual privacy. Specifically, we investigate the efficacy of Machine Unlearning in the context of personalized ECG monitoring, utilizing a dataset of clinical ECG recordings. Our methodology involves training a deep neural classifier on ECG data and fine-tuning the model for individual patients. We demonstrate the susceptibility of fine-tuned models to adversarial attacks, such as the Fast Gradient Sign Method (FGSM), which can exploit additional data points in personalized models. To address this vulnerability, we propose a Machine Unlearning algorithm that selectively removes sensitive data points from fine-tuned models, effectively enhancing model resilience against adversarial manipulation. Experimental results demonstrate the effectiveness of our approach in mitigating the impact of adversarial attacks while maintaining the pre-trained model accuracy.
- Abstract(参考訳): 医療におけるデータ駆動技術の普及が進み、データプライバシやセキュリティに関する懸念がますます高まっている。
この論文は、パーソナライズされた医療モデル、特にECGモニタリングの文脈における、患者のプライバシーを侵害する敵対的攻撃の脆弱性に対処することを目的としている。
本研究では,機械学習モデルに対する露出したデータポイントの影響を緩和し,個々のプライバシを保ちながら,敵攻撃に対するモデル堅牢性を向上する手法"Machine Unlearning"を提案する。
具体的には、臨床用心電図記録のデータセットを用いて、パーソナライズされた心電図モニタリングの文脈における機械学習の有効性について検討する。
本手法では,心電図データに基づく深部神経分類器の訓練と,個々の患者に対するモデルの微調整を行う。
本稿では,FGSM(Fast Gradient Sign Method)のような,個人化されたモデルに付加的なデータポイントを活用できる敵攻撃に対する微調整モデルの感受性を示す。
この脆弱性に対処するために、細調整されたモデルからセンシティブなデータポイントを選択的に除去し、敵の操作に対するモデルのレジリエンスを効果的に向上するマシンアンラーニングアルゴリズムを提案する。
実験により,事前訓練したモデルの精度を維持しつつ,敵攻撃の影響を軽減するためのアプローチの有効性が示された。
関連論文リスト
- Controllable Synthetic Clinical Note Generation with Privacy Guarantees [7.1366477372157995]
本稿では、PHI(Personal Health Information)を含む「クローン」データセットに対する新しい手法を提案する。
我々のアプローチは、クローン化されたデータセットが患者のプライバシを損なうことなく、元のデータの本質的な特性と有用性を保っていることを保証します。
クローン化されたデータセットでトレーニングされた機械学習モデルの性能を評価するために,ユーティリティテストを実施している。
論文 参考訳(メタデータ) (2024-09-12T07:38:34Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Privacy-preserving Generative Framework Against Membership Inference
Attacks [10.791983671720882]
我々は、メンバーシップ推論攻撃に対するプライバシー保護のための生成フレームワークを設計する。
まず、VAEモデルを通してソースデータを潜時空間にマッピングして潜時符号を取得し、次に潜時符号上でメートル法プライバシーを満たすノイズ処理を行い、最終的にVAEモデルを用いて合成データを再構成する。
実験により、新たに生成した合成データを用いて学習した機械学習モデルは、メンバーシップ推論攻撃に効果的に抵抗でき、高いユーティリティを維持できることを示した。
論文 参考訳(メタデータ) (2022-02-11T06:13:30Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Chasing Your Long Tails: Differentially Private Prediction in Health
Care Settings [34.26542589537452]
差分プライベート(DP)学習の方法は、プライバシ保証付きモデルを学習するための汎用的なアプローチを提供する。
DP学習の現代的な手法は、情報に過度にユニークなと判断される情報を検閲するメカニズムを通じて、プライバシーを確保する。
我々はDP学習に最先端の手法を用いて,臨床予測タスクにおけるプライバシ保護モデルを訓練する。
論文 参考訳(メタデータ) (2020-10-13T19:56:37Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
我々は,フェデレートラーニングの文脈において,プライバシを提供するための最初の構文的アプローチを提案する。
当社のアプローチは,プライバシの保護レベルをサポートしながら,実用性やモデルの性能を最大化することを目的としている。
医療領域における2つの重要な課題について,100万人の患者の実世界電子健康データを用いて包括的実証評価を行った。
論文 参考訳(メタデータ) (2020-02-21T02:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。