論文の概要: Efficient Materials Informatics between Rockets and Electrons
- arxiv url: http://arxiv.org/abs/2407.04648v1
- Date: Fri, 5 Jul 2024 17:03:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 12:41:40.793678
- Title: Efficient Materials Informatics between Rockets and Electrons
- Title(参考訳): ロケットと電子の効率的なインフォマティクス
- Authors: Adam M. Krajewski,
- Abstract要約: この論文は、超高温耐火高エントロピー合金(RHEA)を組み込んだ機能性グレード材料(FGM)の設計に焦点を当てている。
原子レベルでは、MPDDと呼ばれる450万以上の緩和された構造から機械学習(ML)に最適化されたデータエコシステムが、実験的な観察を知らせ、熱力学モデルを改善するために使用される。
結果として生じるマルチレベル発見インフラストラクチャは、既存のソリューションを探すのではなく、問題のエンコーディングに重点を置いているため、非常に一般化可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The true power of computational research typically can lay in either what it accomplishes or what it enables others to accomplish. In this work, both avenues are simultaneously embraced across several distinct efforts existing at three general scales of abstractions of what a material is - atomistic, physical, and design. At each, an efficient materials informatics infrastructure is being built from the ground up based on (1) the fundamental understanding of the underlying prior knowledge, including the data, (2) deployment routes that take advantage of it, and (3) pathways to extend it in an autonomous or semi-autonomous fashion, while heavily relying on artificial intelligence (AI) to guide well-established DFT-based ab initio and CALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution. To showcase it, this dissertation discusses the design of multi-alloy functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs) towards gas turbine and jet engine efficiency increase reducing CO2 emissions, as well as hypersonic vehicles. It leverages a new graph representation of underlying mathematical space using a newly developed algorithm based on combinatorics, not subject to many problems troubling the community. Underneath, property models and phase relations are learned from optimized samplings of the largest and highest quality dataset of HEA in the world, called ULTERA. At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models by providing stability data enabled by a new efficient featurization framework.
- Abstract(参考訳): 計算研究の真の力は、通常、それが達成したものと、それが他が達成できるもののいずれかに置かれる。
この研究では、両方の道は、物質とは何か、原子論、物理的、そしてデザインの3つの一般的な抽象スケールに存在するいくつかの異なる取り組みに同時に受け入れられます。
それぞれ、(1)データを含む基礎となる事前知識の基本的な理解、(2)それを利用する展開経路、(3)それを自律的または半自律的に拡張するための経路、そして(3)人工知能(AI)に強く依存し、よく確立されたDFTベースのabイニシアチブおよびCALPHADベースの熱力学手法をガイドすることに基づいて、効率的な材料情報基盤が構築されている。
結果として生じるマルチレベル発見インフラストラクチャは、既存のソリューションを探すのではなく、問題のエンコーディングに重点を置いているため、非常に一般化可能である。
本論文では,超高温耐火高エントロピー合金(RHEA)をガスタービンに導入した多合金機能材料(FGM)の設計について論じる。
基礎となる数学的空間の新しいグラフ表現を、コンビネータ論に基づく新しいアルゴリズムを用いて利用し、コミュニティを悩ませる多くの問題に対処する。
資産モデルと位相関係は、世界最大かつ最高品質のHEAデータセットの最適化サンプリングから学習される。
原子論レベルでは、MPDDと呼ばれる450万以上の緩和された構造から機械学習(ML)に最適化されたデータエコシステムを使用して、実験的な観察を知らせ、新しい効率的な破砕フレームワークによって実現された安定性データを提供することで熱力学モデルを改善する。
関連論文リスト
- Accelerating CALPHAD-based Phase Diagram Predictions in Complex Alloys Using Universal Machine Learning Potentials: Opportunities and Challenges [0.36868085124383626]
本研究は、位相図計算を著しく高速化する機械学習原子間ポテンシャル(MLIP)の利用について検討する。
Cr-Mo, Cu-Au, Pt-Wなどのケーススタディを用いて, MLIP, 特にORBがDFTに比べて3桁を超える計算スピードアップを達成することを示した。
論文 参考訳(メタデータ) (2024-11-22T21:24:13Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - ssProp: Energy-Efficient Training for Convolutional Neural Networks with Scheduled Sparse Back Propagation [4.77407121905745]
バックプロパゲーション(BP)は、ディープラーニングモデルをトレーニングする際の計算コストの主要な源泉である。
ディープラーニングアーキテクチャにシームレスに統合できる汎用的でエネルギー効率の良い畳み込みモジュールを提案する。
論文 参考訳(メタデータ) (2024-08-22T17:22:59Z) - NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements [7.704598780320887]
本研究では、PINNと高忠実度スペクトル要素法(SEM)を融合したハイブリッドフレームワークであるNeuroSEMを紹介した。
NeuroSEMはPINNとSEMの両方の強度を活用し、多物理問題に対する堅牢な解決策を提供する。
キャビティフローおよびシリンダーを過ぎる流れにおける熱対流に対するNeuroSEMの有効性と精度を実証した。
論文 参考訳(メタデータ) (2024-07-30T22:01:14Z) - Opening the Black Box: Towards inherently interpretable energy data
imputation models using building physics insight [0.0]
本稿では, 物理インフォームド・デノイング・オートエンコーダ (PI-DAE) を用いて, 商業ビルにおけるデータ計算の欠如について検討する。
特に,提案手法は物理に着想を得たソフト制約をデノナイジングオートエンコーダ(DAE)の損失関数に適用する。
論文 参考訳(メタデータ) (2023-11-28T09:34:44Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
本稿では,少数の代表データを用いたスクラッチからのデータ効率学習の問題について考察する。
我々は,MHEに基づくアクティブラーニング(MHEAL)アルゴリズムを提案し,MHEALの包括的な理論的保証を提供する。
論文 参考訳(メタデータ) (2022-06-30T11:39:12Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。