Embracing Massive Medical Data
- URL: http://arxiv.org/abs/2407.04687v1
- Date: Fri, 5 Jul 2024 17:50:30 GMT
- Title: Embracing Massive Medical Data
- Authors: Yu-Cheng Chou, Zongwei Zhou, Alan Yuille,
- Abstract summary: We propose an online learning method that enables training AI from massive medical data.
Our method identifies the most significant samples for the current AI model based on their data uniqueness and prediction uncertainty.
Compared with prevalent training paradigms, our method not only improves data efficiency by enabling training on continual data streams, but also mitigates catastrophic forgetting.
- Score: 8.458637345001758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As massive medical data become available with an increasing number of scans, expanding classes, and varying sources, prevalent training paradigms -- where AI is trained with multiple passes over fixed, finite datasets -- face significant challenges. First, training AI all at once on such massive data is impractical as new scans/sources/classes continuously arrive. Second, training AI continuously on new scans/sources/classes can lead to catastrophic forgetting, where AI forgets old data as it learns new data, and vice versa. To address these two challenges, we propose an online learning method that enables training AI from massive medical data. Instead of repeatedly training AI on randomly selected data samples, our method identifies the most significant samples for the current AI model based on their data uniqueness and prediction uncertainty, then trains the AI on these selective data samples. Compared with prevalent training paradigms, our method not only improves data efficiency by enabling training on continual data streams, but also mitigates catastrophic forgetting by selectively training AI on significant data samples that might otherwise be forgotten, outperforming by 15% in Dice score for multi-organ and tumor segmentation. The code is available at https://github.com/MrGiovanni/OnlineLearning
Related papers
- Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration [54.8229698058649]
We study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies.
Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits.
We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks.
arXiv Detail & Related papers (2024-10-23T17:58:45Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
Existing data selection methods suffer from slow and computationally expensive processes.
Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together.
We develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing.
arXiv Detail & Related papers (2023-12-05T00:42:35Z) - CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation [11.222501077070765]
Machine unlearning has emerged as an essential technique to selectively remove the influence of specific training data points on trained models.
We introduce a three-step process, named CovarNav, to facilitate this forgetting.
We rigorously evaluate CovarNav on the CIFAR-10 and Vggface2 datasets.
arXiv Detail & Related papers (2023-11-21T21:19:59Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Contrastive Deep Encoding Enables Uncertainty-aware
Machine-learning-assisted Histopathology [6.548275341067594]
terabytes of training data can be consciously utilized to pre-train deep networks to encode informative representations.
We show that our approach can reach the state-of-the-art (SOTA) for patch-level classification with only 1-10% randomly selected annotations.
arXiv Detail & Related papers (2023-09-13T17:37:19Z) - D4: Improving LLM Pretraining via Document De-Duplication and
Diversification [38.84592304799403]
We show that careful data selection via pre-trained model embeddings can speed up training.
We also show that repeating data intelligently consistently outperforms baseline training.
arXiv Detail & Related papers (2023-08-23T17:58:14Z) - Application of Federated Learning in Building a Robust COVID-19 Chest
X-ray Classification Model [0.0]
Federated Learning (FL) helps AI models to generalize better without moving all the data to a central server.
We trained a deep learning model to solve a binary classification problem of predicting the presence or absence of COVID-19.
arXiv Detail & Related papers (2022-04-22T05:21:50Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data
Distillation and Augmentation [6.78974856327994]
The application of Deep Learning for medical diagnosis is often hampered by two problems.
First, the amount of training data may be scarce, as it is limited by the number of patients who have acquired the condition to be diagnosed.
Second, the training data may be corrupted by various types of noise.
arXiv Detail & Related papers (2020-06-17T15:52:28Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.