論文の概要: Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing
- arxiv url: http://arxiv.org/abs/2407.04718v2
- Date: Tue, 23 Jul 2024 13:47:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 22:04:29.214418
- Title: Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing
- Title(参考訳): ニューロモルフィックコンピューティングのための確率的機械装置のイベントベースシミュレーション
- Authors: Waleed El-Geresy, Christos Papavassiliou, Deniz Gündüz,
- Abstract要約: イベントベースシステムのシミュレーションに適したメムリスタの一般モデルを構築した。
既存のmemristorの汎用モデルをイベント駆動設定に拡張する。
本稿では,イベントベースモデルのパラメータをドリフトモデルに適合させる手法を示す。
- 参考スコア(独自算出の注目度): 41.66366715982197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we build a general model of memristors suitable for the simulation of event-based systems, such as hardware spiking neural networks, and more generally, neuromorphic computing systems. We extend an existing general model of memristors - the Generalised Metastable Switch Model - to an event-driven setting, eliminating errors associated discrete time approximation, as well as offering potential improvements in terms of computational efficiency for simulation. We introduce the notion of a volatility state variable, to allow for the modelling of memory-dependent and dynamic switching behaviour, succinctly capturing and unifying a variety of volatile phenomena present in memristive devices, including state relaxation, structural disruption, Joule heating, and drift acceleration phenomena. We supply a drift dataset for titanium dioxide memristors and introduce a linear conductance model to simulate the drift characteristics, motivated by a proposed physical model of filament growth. We then demonstrate an approach for fitting the parameters of the event-based model to the drift model.
- Abstract(参考訳): 本稿では,ハードウェアスパイクニューラルネットワークなどのイベントベースシステムのシミュレーションに適したメムリスタの汎用モデルを構築し,より一般的にはニューロモルフィックコンピューティングシステムを構築する。
我々は、既存の一般化メタスタブルスイッチモデル(Generalized Metastable Switch Model)をイベント駆動設定に拡張し、離散時間近似に伴う誤差を排除し、シミュレーションの計算効率の面で潜在的な改善を提供する。
本研究では,メモリ依存および動的スイッチング動作をモデル化し,状態緩和,構造破壊,ジュール加熱,ドリフト加速度現象など,記憶装置に存在する様々な揮発現象を簡潔に捉え,一元化するために,ボラティリティ状態変数の概念を導入する。
我々は二酸化チタンメムリスタのドリフトデータセットを提供し、フィラメント成長の物理モデルによって動機付けられたドリフト特性をシミュレートする線形コンダクタンスモデルを導入する。
次に、イベントベースモデルのパラメータをドリフトモデルに適合させる方法を示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。