論文の概要: A GPT-based Code Review System for Programming Language Learning
- arxiv url: http://arxiv.org/abs/2407.04722v1
- Date: Fri, 21 Jun 2024 12:16:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 16:25:52.673960
- Title: A GPT-based Code Review System for Programming Language Learning
- Title(参考訳): プログラミング学習のためのGPTに基づくコードレビューシステム
- Authors: Lee Dong-Kyu,
- Abstract要約: 本研究は,GPT-4を用いて学習者フレンドリなコードレビューを提供し,AIアシスト不正行為のリスクを最小限に抑えるシステムを提案する。
改良されたシステムは、厳格なコード正当性チェック、応答時間、API呼び出しコストの低減、コードレビューの品質の4つの基準に基づいて、ソフトウェア教育の専門家による評価を受けた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing demand for programming language education and growing class sizes require immediate and personalized feedback. However, traditional code review methods have limitations in providing this level of feedback. As the capabilities of Large Language Models (LLMs) like GPT for generating accurate solutions and timely code reviews are verified, this research proposes a system that employs GPT-4 to offer learner-friendly code reviews and minimize the risk of AI-assist cheating. To provide learner-friendly code reviews, a dataset was collected from an online judge system, and this dataset was utilized to develop and enhance the system's prompts. In addition, to minimize AI-assist cheating, the system flow was designed to provide code reviews only for code submitted by a learner, and a feature that highlights code lines to fix was added. After the initial system was deployed on the web, software education experts conducted usability test. Based on the results, improvement strategies were developed to improve code review and code correctness check module, thereby enhancing the system. The improved system underwent evaluation by software education experts based on four criteria: strict code correctness checks, response time, lower API call costs, and the quality of code reviews. The results demonstrated a performance to accurately identify error types, shorten response times, lower API call costs, and maintain high-quality code reviews without major issues. Feedback from participants affirmed the tool's suitability for teaching programming to primary and secondary school students. Given these benefits, the system is anticipated to be a efficient learning tool in programming language learning for educational settings.
- Abstract(参考訳): プログラミング言語教育とクラスサイズの増大に対する需要の増加は、即時かつパーソナライズされたフィードバックを必要とする。
しかし、従来のコードレビュー手法には、このレベルのフィードバックの提供に制限がある。
GPTのような大規模言語モデル(LLM)の正確な解を生成する能力とタイムリーなコードレビューが検証されるため、GPT-4を用いて学習者フレンドリなコードレビューを提供し、AIアシスト不正行為のリスクを最小限に抑えるシステムを提案する。
学習者フレンドリなコードレビューを提供するため、オンライン判断システムからデータセットを収集し、このデータセットを使用してシステムのプロンプトの開発と強化を行った。
さらに、AIアシスタントの不正行為を最小限に抑えるため、システムフローは学習者が提出したコードにのみコードレビューを提供するように設計されており、修正するコード行をハイライトする機能も追加された。
最初のシステムがWeb上にデプロイされた後、ソフトウェア教育の専門家はユーザビリティテストを実施した。
結果から,コードレビューとコード正当性チェックモジュールの改善策が開発され,システムの向上が図られた。
改良されたシステムは、厳格なコード正当性チェック、応答時間、API呼び出しコストの低減、コードレビューの品質の4つの基準に基づいて、ソフトウェア教育の専門家による評価を受けた。
その結果、エラータイプを正確に識別し、応答時間を短縮し、API呼び出しコストを低減し、重大な問題なく高品質なコードレビューを維持する性能が示された。
参加者からのフィードバックは、小学生や中学生にプログラミングを教えるためのツールの適性を確認した。
これらの利点を踏まえると、このシステムは教育環境のためのプログラム言語学習における効率的な学習ツールとして期待されている。
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - Leveraging Reviewer Experience in Code Review Comment Generation [11.224317228559038]
私たちは、自然言語のコードレビューを提供する際に、人間のレビュアーを模倣するためにディープラーニングモデルを訓練します。
生成したレビューの品質は、モデルトレーニングで使用されるオープンソースのコードレビューデータの品質のため、まだ最適化されていない。
本稿では,レビュー品質の指標として,過去のレビュアのオーサリングとレビューを活かした経験学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T07:52:50Z) - Sifting through the Chaff: On Utilizing Execution Feedback for Ranking the Generated Code Candidates [46.74037090843497]
大規模言語モデル(LLM)は、自然言語記述に基づいたコードの自動生成によって、開発者がプログラミングにアプローチする方法を変えつつある。
本稿では,実行フィードバックを活用するコードランキングの革新的なアプローチである RankEF について述べる。
3つのコード生成ベンチマークの実験では、RanEFが最先端のCodeRankerよりも大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2024-08-26T01:48:57Z) - AI-Assisted Assessment of Coding Practices in Modern Code Review [11.803776132972029]
AutoCommenterは、コーディングのベストプラクティスを学習し、強制するためのエンドツーエンドシステムである。
本稿では,AutoCommenterの開発,展開,評価について報告する。
論文 参考訳(メタデータ) (2024-05-22T11:57:18Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Improving Automated Code Reviews: Learning from Experience [12.573740138977065]
本研究では,自動コードレビューモデルから高品質なレビューを生成できるかどうかを検討する。
経験を意識したオーバーサンプリングは、レビューの正確性、情報レベル、有意義性を高めることができる。
論文 参考訳(メタデータ) (2024-02-06T07:48:22Z) - ReviewRanker: A Semi-Supervised Learning Based Approach for Code Review
Quality Estimation [0.6895577977557867]
レビュープロセスの有効性と継続的改善の検査は、開発生産性を高めることができる。
本稿では,各コードレビューに信頼性スコアを割り当てることを目的とした,半教師付き学習システムであるReviewRankerを提案する。
提案手法は,開発者が提供したシンプルで明確なラベルに基づいて訓練される。
論文 参考訳(メタデータ) (2023-07-08T15:37:48Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - CodeReviewer: Pre-Training for Automating Code Review Activities [36.40557768557425]
本研究は,コードレビューシナリオにおけるタスクの事前学習技術を活用することに焦点を当てる。
私たちは、最も人気のある9つのプログラミング言語で、オープンソースのプロジェクトから、現実世界のコード変更とコードレビューの大規模なデータセットを収集します。
コード差分とレビューをよりよく理解するために、コードレビューセナリオに特化した4つの事前トレーニングタスクを利用する事前トレーニングモデルであるCodeReviewerを提案する。
論文 参考訳(メタデータ) (2022-03-17T05:40:13Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。