Data-Driven Prediction and Uncertainty Quantification of PWR Crud-Induced Power Shift Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2407.04726v1
- Date: Thu, 27 Jun 2024 15:04:24 GMT
- Title: Data-Driven Prediction and Uncertainty Quantification of PWR Crud-Induced Power Shift Using Convolutional Neural Networks
- Authors: Aidan Furlong, Farah Alsafadi, Scott Palmtag, Andrew Godfrey, Xu Wu,
- Abstract summary: Crud-Induced Power Shift (CIPS) is an operational challenge in Pressurized Water Reactors.
This work proposes a top-down approach to predict CIPS instances on an assembly level with reactor-specific calibration built-in.
- Score: 2.147634833794939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of Crud-Induced Power Shift (CIPS) is an operational challenge in Pressurized Water Reactors that is due to the development of crud on the fuel rod cladding. The available predictive tools developed previously, usually based on fundamental physics, are computationally expensive and have shown differing degrees of accuracy. This work proposes a completely top-down approach to predict CIPS instances on an assembly level with reactor-specific calibration built-in. Built using artificial neural networks, this work uses a three-dimensional convolutional approach to leverage the image-like layout of the input data. As a classifier, the convolutional neural network model predicts whether a given assembly will experience CIPS as well as the time of occurrence during a given cycle. This surrogate model is both trained and tested using a combination of calculated core model parameters and measured plant data from Unit 1 of the Catawba Nuclear Station. After the evaluation of its performance using various metrics, Monte Carlo dropout is employed for extensive uncertainty quantification of the model predictions. The results indicate that this methodology could be a viable approach in predicting CIPS with an assembly-level resolution across both clean and afflicted cycles, while using limited computational resources.
Related papers
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
We develop a model error correction for the European Centre for Medium-Range Weather Forecasts using a neural network.
The network is pre-trained offline using a large dataset of operational analyses and analysis increments.
It is then integrated into the IFS within the Object-Oriented Prediction System (OOPS) so as to be used in data assimilation and forecast experiments.
arXiv Detail & Related papers (2024-03-06T13:36:31Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres.
Our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must.
arXiv Detail & Related papers (2023-11-27T21:37:50Z) - Short-term power load forecasting method based on CNN-SAEDN-Res [12.733504847643005]
This paper presents a short-term load forecasting method based on convolutional neural network (CNN), self-attention encoder-decoder network (SAEDN) and residual-refinement (Res)
The proposed method has advantages in terms of prediction accuracy and prediction stability.
arXiv Detail & Related papers (2023-09-02T11:36:50Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.