論文の概要: PhishNet: A Phishing Website Detection Tool using XGBoost
- arxiv url: http://arxiv.org/abs/2407.04732v1
- Date: Sat, 29 Jun 2024 21:31:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 16:25:52.663349
- Title: PhishNet: A Phishing Website Detection Tool using XGBoost
- Title(参考訳): PhishNet: XGBoostを使ったフィッシングWebサイト検出ツール
- Authors: Prashant Kumar, Kevin Antony, Deepakmoney Banga, Arshpreet Sohal,
- Abstract要約: PhisNetは最先端のWebアプリケーションで、高度な機械学習を使ってフィッシングサイトを検出するように設計されている。
個人や組織が堅牢なAIフレームワークを通じてフィッシング攻撃を特定し予防することを目的としている。
- 参考スコア(独自算出の注目度): 1.777434178384403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.
- Abstract(参考訳): PhisNetは最先端のWebアプリケーションで、高度な機械学習を使ってフィッシングサイトを検出するように設計されている。
個人や組織が堅牢なAIフレームワークを通じてフィッシング攻撃を特定し予防することを目的としている。
PhisNetはPythonを使用して、さまざまな機械学習アルゴリズムと特徴抽出技術を高精度かつ効率的に適用している。
プロジェクトはまず、フィッシングと正当なサイトの両方からなる、URLの包括的なデータセットを収集し、前処理することから始まる。
モデルを効果的に訓練するために、URL長、特殊文字、ドメイン年齢などの重要な特徴を抽出する。
ロジスティック回帰、決定木、ニューラルネットワークを含む複数の機械学習アルゴリズムを評価し、フィッシング検出における最高のパフォーマンスを決定する。
モデルは精度、精度、リコール、F1スコアなどのメトリクスを最適化するために微調整され、一般的なフィッシング戦術と洗練されたフィッシング戦術の両方を確実に検出する。
PhisNetのWebアプリケーションはReact.jsを使って開発されており、クライアントサイドのレンダリングとバックエンドサービスとのスムーズな統合を可能にし、応答性とユーザフレンドリなインターフェースを作成することができる。
ユーザは、データを処理し、リアルタイムで結果を提供する堅牢なバックエンドインフラストラクチャのおかげで、URLを入力し、信頼スコアで即時予測を受け取ることができる。
このモデルは、計算能力とスケーラビリティのためにGoogle ColabとAWS EC2を使用してデプロイされる。
要約すると、PhysNetはサイバーセキュリティの大幅な進歩を表しており、ユーザーのセキュリティを高めるために機械学習とWeb開発技術の効果的な利用を示している。
ユーザーはフィッシング攻撃を防ぎ、サイバーセキュリティを変革するAIの可能性を強調することができる。
関連論文リスト
- Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
LLMエージェントフレームワークの開発により,従来の参照型フィッシング検出の制約に対処する。
このエージェントは、Large Language Modelsを利用して、積極的にオンライン情報を取得し、活用する。
我々の手法は0.945の精度で達成され、既存の解(DynaPhish)を0.445で大幅に上回っている。
論文 参考訳(メタデータ) (2024-08-03T05:08:27Z) - Position Paper: Think Globally, React Locally -- Bringing Real-time Reference-based Website Phishing Detection on macOS [0.4962561299282114]
最近のフィッシング攻撃の急増は、従来の反フィッシング・ブラックリストのアプローチの有効性を弱め続けている。
デバイス上でのフィッシング防止ソリューションは、ローカルで高速なフィッシング検出を提供するため、人気が高まっている。
コンピュータビジョンとデバイス上の機械学習モデルを組み合わせてウェブサイトをリアルタイムで分析するフィッシング検出ソリューションを提案する。
論文 参考訳(メタデータ) (2024-05-28T14:46:03Z) - Novel Interpretable and Robust Web-based AI Platform for Phishing Email Detection [0.0]
フィッシングメールは重大な脅威となり、財政的損失とセキュリティ侵害を引き起こしている。
本研究では,メール分類のための高性能機械学習モデルを提案する。
このモデルはf1スコアが0.99に達し、関連するアプリケーションへのデプロイ用に設計されている。
論文 参考訳(メタデータ) (2024-05-19T17:18:27Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
本稿では,1次元畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2024-04-27T17:13:49Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
フィッシング(英: Phishing)は、ますます洗練されたサイバー攻撃形態であり、世界中の企業に巨額の経済的損害を与えている。
本稿では,フィッシングサイトを検出するための包括的手法を提案する。
特徴選択, 欲求アルゴリズム, クロスバリデーション, 深層学習を組み合わせて, 洗練された積み重ねアンサンブルを構築している。
論文 参考訳(メタデータ) (2024-03-13T14:26:25Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
ニューラルネットワークに自己抽出型自己実行型マルウェアを組み込むテクニックであるMaleficNet 2.0を紹介する。
MaleficNet 2.0インジェクションテクニックはステルス性があり、モデルのパフォーマンスを低下させることなく、除去テクニックに対して堅牢である。
我々は、MaleficNet 2.0を用いた概念実証型自己抽出ニューラルネットワークマルウェアを実装し、広く採用されている機械学習フレームワークに対する攻撃の実用性を実証した。
論文 参考訳(メタデータ) (2024-03-06T10:27:08Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。