論文の概要: PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis
- arxiv url: http://arxiv.org/abs/2404.17960v1
- Date: Sat, 27 Apr 2024 17:13:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 18:32:14.038334
- Title: PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis
- Title(参考訳): PhishGuard: 説明可能性分析によるフィッシングURLの検出のための畳み込みニューラルネットワークベースモデル
- Authors: Md Robiul Islam, Md Mahamodul Islam, Mst. Suraiya Afrin, Anika Antara, Nujhat Tabassum, Al Amin,
- Abstract要約: フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
本稿では,1次元畳み込みニューラルネットワーク(CNN)を提案する。
- 参考スコア(独自算出の注目度): 1.102674168371806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity is one of the global issues because of the extensive dependence on cyber systems of individuals, industries, and organizations. Among the cyber attacks, phishing is increasing tremendously and affecting the global economy. Therefore, this phenomenon highlights the vital need for enhancing user awareness and robust support at both individual and organizational levels. Phishing URL identification is the best way to address the problem. Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs. However, these approaches often need more convincing accuracy and rely on datasets consisting of limited samples. Furthermore, these black box intelligent models decision to detect suspicious URLs needs proper explanation to understand the features affecting the output. To address the issues, we propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data. The proposed model outperforms existing works by attaining an accuracy of 99.85%. Additionally, our explainability analysis highlights certain features that significantly contribute to identifying the phishing URL.
- Abstract(参考訳): サイバーセキュリティは、個人、産業、組織のサイバーシステムに大きく依存しているため、世界的な問題の一つである。
サイバー攻撃の中で、フィッシングは急速に増加し、世界経済に影響を及ぼしている。
したがって、この現象は、個人レベルと組織レベルの両方において、ユーザ認識と堅牢なサポートを強化するための重要な必要性を強調している。
フィッシングURLの識別は、この問題に対処する最善の方法だ。
フィッシングURLの検出を自動化するために,機械学習と深層学習の手法が提案されている。
しかし、これらのアプローチはより正確で、限られたサンプルからなるデータセットに依存していることが多い。
さらに、これらのブラックボックスインテリジェントモデルは、不審なURLを検出するために、出力に影響を及ぼす特徴を理解するために適切な説明が必要である。
この問題に対処するため,我々は1次元畳み込みニューラルネットワーク(CNN)を提案し,膨大な機能と大量のデータを用いてモデルを訓練した。
提案したモデルは99.85%の精度で既存の作品より優れている。
さらに、説明可能性分析では、フィッシングURLの識別に大きく貢献する特定の特徴を強調している。
関連論文リスト
- PhishNet: A Phishing Website Detection Tool using XGBoost [1.777434178384403]
PhisNetは最先端のWebアプリケーションで、高度な機械学習を使ってフィッシングサイトを検出するように設計されている。
個人や組織が堅牢なAIフレームワークを通じてフィッシング攻撃を特定し予防することを目的としている。
論文 参考訳(メタデータ) (2024-06-29T21:31:13Z) - The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs [0.0]
本研究では,マルチヘッド・アテンション,テンポラル・コンボリューショナル・ネットワーク(TCN),BI-LSTM,LSTMといった深層学習モデルを用いたフィッシングサイトの検出に焦点を当てた。
以上の結果から,マルチヘッド注意モデルとBI-LSTMモデルは,TCNやLSTMといった他の深層学習アルゴリズムよりも精度,リコール,F1スコアが優れていることが示された。
論文 参考訳(メタデータ) (2024-04-15T13:58:22Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
本稿では,フィッシングサイトを検出するための2相スタック一般化モデルであるAntiPhishStackを提案する。
このモデルは、URLと文字レベルのTF-IDF特徴の学習を対称的に活用し、新たなフィッシング脅威に対処する能力を高める。
良性およびフィッシングまたは悪意のあるURLを含む2つのベンチマークデータセットに対する実験的検証は、既存の研究と比較して96.04%の精度で、このモデルの例外的な性能を示している。
論文 参考訳(メタデータ) (2024-01-17T03:44:27Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
フィッシングはよく知られたサイバー攻撃であり、フィッシングウェブページの作成と対応するURLの拡散を中心に展開している。
独自の属性を蒸留し、予測モデルを構築することで、ゼロデイフィッシングURLをプリエンプティブに分類する様々な技術が利用可能である。
この提案は、フィッシング検出ソリューション内の永続的な課題、特に包括的なデータセットを組み立てる予備フェーズに集中している。
本稿では,MLモデルのバイアスを軽減するために開発されたツールの形で,潜在的な解決策を提案する。
論文 参考訳(メタデータ) (2024-01-16T13:45:54Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
対向摂動に対する概念ベースモデルの堅牢性について検討する。
本稿では、まず、概念ベースモデルのセキュリティ脆弱性を評価するために、さまざまな悪意ある攻撃を提案し、分析する。
そこで我々は,これらのシステムのロバスト性を高めるための,汎用的対人訓練に基づく防御機構を提案する。
論文 参考訳(メタデータ) (2022-11-29T10:43:51Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
小さな入力摂動に対する過敏性のため、アドリヤルロバスト性はニューラルネットワークにとって新たな課題となっている。
我々は,データ入力とモデル重みの共振レンズを用いて,ニューラルネットワークの非特異な対角性の概念を定式化する。
論文 参考訳(メタデータ) (2021-02-23T20:59:30Z) - Do Wider Neural Networks Really Help Adversarial Robustness? [92.8311752980399]
モデルロバスト性は自然精度と摂動安定性のトレードオフと密接に関係していることを示す。
本稿では,ワイドモデル上でラムダ$を適応的に拡大するWidth Adjusted Regularization(WAR)手法を提案する。
論文 参考訳(メタデータ) (2020-10-03T04:46:17Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。