SpikeLLM: Scaling up Spiking Neural Network to Large Language Models via Saliency-based Spiking
- URL: http://arxiv.org/abs/2407.04752v3
- Date: Thu, 10 Apr 2025 05:50:49 GMT
- Title: SpikeLLM: Scaling up Spiking Neural Network to Large Language Models via Saliency-based Spiking
- Authors: Xingrun Xing, Boyan Gao, Zheng Zhang, David A. Clifton, Shitao Xiao, Li Du, Guoqi Li, Jiajun Zhang,
- Abstract summary: The human brain is much more energy-efficient than large language models with similar parameters.<n>We propose the first spiking large language model, SpikeLLM.<n>SpikeLLM reduces 11.01% WikiText2 perplexity and improves 2.55% accuracy of common scene reasoning.
- Score: 43.275370104552344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in large language models (LLMs) with billions of parameters have improved performance in various applications, but their inference processes demand significant energy and computational resources. In contrast, the human brain, with approximately 86 billion neurons, is much more energy-efficient than LLMs with similar parameters. Inspired by this, we redesign 7$\sim$70 billion parameter LLMs using bio-plausible spiking mechanisms, emulating the efficient behavior of the human brain. We propose the first spiking large language model, SpikeLLM. Coupled with the proposed model, two essential approaches are proposed to improve spike training efficiency: Generalized Integrate-and-Fire (GIF) neurons to compress spike length from $T$ to $\frac{T}{L} \log_2 L$ bits, and an Optimal Brain Spiking framework to divide outlier channels and allocate different $T$ for GIF neurons, which further compresses spike length to approximate $log_2T$ bits. The necessity of spike-driven LLM is proved by comparison with quantized LLMs with similar operations. In the OmniQuant pipeline, SpikeLLM reduces 11.01% WikiText2 perplexity and improves 2.55% accuracy of common scene reasoning on a LLAMA-7B W4A4 model. In the GPTQ pipeline, SpikeLLM achieves direct additive in linear layers, significantly exceeding PB-LLMs.
Related papers
- IML-Spikeformer: Input-aware Multi-Level Spiking Transformer for Speech Processing [37.95536541492917]
Spiking Neural Networks (SNNs) offer energy-efficient alternatives to traditional Artificial Neural Networks (ANNs)<n>IML-Spikeformer is a spiking Transformer architecture specifically designed for large-scale speech processing.<n>IML-Spikeformer achieves word error rates of 6.0% on AiShell-1 and 3.4% on Librispeech-960, comparable to conventional ANN transformers.
arXiv Detail & Related papers (2025-07-10T03:26:24Z) - Polar Sparsity: High Throughput Batched LLM Inferencing with Scalable Contextual Sparsity [4.24164487223914]
We introduce Polar Sparsity, highlighting a key shift in sparsity importance from dense to Attention layers as we scale batch size and sequence length.<n>We develop hardware-efficient, sparsity-aware kernels for selective computation and Attention, delivering up to (2.2times) end-to-end speed for models like OPT, LLaMA-2 & 3, across various batch sizes and sequence lengths without compromising accuracy.
arXiv Detail & Related papers (2025-05-20T20:15:42Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - CoLA: Compute-Efficient Pre-Training of LLMs via Low-Rank Activation [17.807249890437767]
We introduce CoLA and its memory-efficient implementation, CoLA-M.
We leverage the low-rank structure observed widely in model activations to reduce model size, boost model capacity and training efficiency.
Experiments on LLaMA models with 60 million to 7 billion parameters show that CoLA reduces the computing cost by $bf 2pmbtimes$ and improves training throughput by $bf 1.86pmbtimes$ while maintaining full-rank level performance.
arXiv Detail & Related papers (2025-02-16T01:05:16Z) - PRF: Parallel Resonate and Fire Neuron for Long Sequence Learning in Spiking Neural Networks [6.545474731089018]
We address the efficiency and performance challenges of long sequence learning in Spiking Neural Networks (SNNs) simultaneously.
First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L2)$ to $O(Llog L)$.
Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain
arXiv Detail & Related papers (2024-10-04T15:51:56Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.
We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.
EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLM is an efficient multiplication-free model for large language models.
It achieves perplexity improvements of 5.6 and 22.7 points at comparable or lower latency.
Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM.
arXiv Detail & Related papers (2024-06-10T02:47:55Z) - SpikeLM: Towards General Spike-Driven Language Modeling via Elastic Bi-Spiking Mechanisms [30.825695629006628]
Bio-inspired spiking neural networks (SNNs) have advantages of biological plausibility, event-driven sparsity, and binary activation.
Large-scale language models exhibit promising generalization capability, making it a valuable issue to explore more general spike-driven models.
This work proposes the first fully spiking mechanism for general language tasks, including both discriminative and generative ones.
arXiv Detail & Related papers (2024-06-05T13:59:03Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
We propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs)
The Efficient Attention Skipping (EAS) method evaluates the attention redundancy and skips the less important MHAs to speed up inference.
The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed.
arXiv Detail & Related papers (2024-03-22T14:20:34Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiRE comprises of two novel components: (i) a compression scheme to cheaply predict top-$k$ rows/columns with high recall, followed by full computation restricted to the predicted subset, and (ii) DA-TOP-$k$: an efficient multi-device approximate top-$k$ operator.
We demonstrate that on a one billion parameter model, HiRE applied to both the softmax as well as feedforward layers, achieves almost matching pretraining and downstream accuracy, and speeds up inference latency by $1.47times$ on a single TPUv5e device.
arXiv Detail & Related papers (2024-02-14T18:04:36Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLM is a groundbreaking 1-bit post-training quantization scheme tailored for pretrained large language models.
It achieves for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families.
arXiv Detail & Related papers (2024-02-06T09:26:34Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
Large Language Models (LLMs) are difficult to fully fine-tune due to their sheer number of parameters.
We propose SpIEL, a novel sparse finetuning method which maintains an array of parameter indices and the deltas of these parameters relative to their pretrained values.
We show that SpIEL is superior to popular parameter-efficient fine-tuning methods like LoRA in terms of performance and comparable in terms of run time.
arXiv Detail & Related papers (2024-01-29T18:43:49Z) - CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks [1.5199992713356987]
This paper introduces CompactifAI, an innovative compression approach using quantum-inspired networks.
Our method is versatile and can be implemented with - or on top of - other compression techniques.
As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% memory size of LlaMA 7B.
arXiv Detail & Related papers (2024-01-25T11:45:21Z) - RPTQ: Reorder-based Post-training Quantization for Large Language Models [46.03754730678076]
Large-scale language models (LLMs) have demonstrated impressive performance, but their deployment presents challenges due to their significant memory usage.
We introduce a quantization method called RPTQ, which utilizes a reorder-based approach.
In our experiments, RPTQ achieved a significant breakthrough by utilizing 3-bit activation in LLMs for the first time, resulting in a substantial reduction in memory usage.
arXiv Detail & Related papers (2023-04-03T15:46:15Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.