Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models
- URL: http://arxiv.org/abs/2403.15226v2
- Date: Wed, 5 Jun 2024 05:52:44 GMT
- Title: Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models
- Authors: Qiong Wu, Weihao Ye, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji,
- Abstract summary: We propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs)
The Efficient Attention Skipping (EAS) method evaluates the attention redundancy and skips the less important MHAs to speed up inference.
The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed.
- Score: 73.48675708831328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs), termed Efficient Attention Skipping (EAS). Concretely, we first reveal that multi-head attentions (MHAs), the main computational overhead of MLLMs, are often redundant to downstream tasks. Based on this observation, EAS evaluates the attention redundancy and skips the less important MHAs to speed up inference. Besides, we also propose a novel propagation-of-information adapter (PIA) to serve the attention skipping of EAS and keep parameter efficiency, which can be further re-parameterized into feed-forward networks (FFNs) for zero-extra latency. To validate EAS, we apply it to a recently proposed MLLM called LaVIN and a classic VL pre-trained model called METER, and conduct extensive experiments on a set of benchmarks. The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed. For instance, LaVIN-EAS can obtain 89.98\% accuracy on ScineceQA while speeding up inference by 2.2 times to LaVIN
Related papers
- Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks.
To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions.
arXiv Detail & Related papers (2024-11-17T01:16:37Z) - EchoAtt: Attend, Copy, then Adjust for More Efficient Large Language Models [29.57891007810509]
Large Language Models (LLMs) have demonstrated outstanding performance across a variety of natural language processing tasks.
We introduce EchoAtt, a novel framework aimed at optimizing transformer-based models by analyzing and leveraging the similarity of attention patterns across layers.
Our best results with TinyLLaMA-1.1B demonstrate that EchoAtt improves inference speed by 15%, training speed by 25%, and reduces the number of parameters by approximately 4%, all while improving zero-shot performance.
arXiv Detail & Related papers (2024-09-22T21:08:37Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoD is a framework designed to enable the efficient training of small-scale Multimodal Language Models.
We optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts architecture into the language model.
We also propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration.
arXiv Detail & Related papers (2024-08-28T15:52:23Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [27.930351465266515]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - E-Sparse: Boosting the Large Language Model Inference through Entropy-based N:M Sparsity [6.434967516411846]
We introduce the information entropy of hidden state features into a pruning metric design, namely E-Sparse.
E-Sparse employs the information richness to leverage the channel importance, and further incorporates several novel techniques to put it into effect.
E-Sparse can significantly speed up the model inference over the dense model (up to 1.53X) and obtain significant memory saving (up to 43.52%), with acceptable accuracy loss.
arXiv Detail & Related papers (2023-10-24T15:27:15Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
We propose an instantiation--amortized auto-tuning (AT2) to speed up tuning of machine learning models.
We conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2)
arXiv Detail & Related papers (2021-06-17T00:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.