論文の概要: Continuous Sleep Depth Index Annotation with Deep Learning Yields Novel Digital Biomarkers for Sleep Health
- arxiv url: http://arxiv.org/abs/2407.04753v2
- Date: Sun, 08 Dec 2024 08:12:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:47:12.193929
- Title: Continuous Sleep Depth Index Annotation with Deep Learning Yields Novel Digital Biomarkers for Sleep Health
- Title(参考訳): 深層学習による連続睡眠深度指標アノテーション : 睡眠健康のための新しいデジタルバイオマーカー
- Authors: Songchi Zhou, Ge Song, Haoqi Sun, Yue Leng, M. Brandon Westover, Shenda Hong,
- Abstract要約: 連続型睡眠深度診断法は、睡眠構造に関するより詳細な情報を明らかにし、睡眠医学における定期的な臨床使用のための新しいデジタルバイオマーカーを提供する。
ケーススタディでは、睡眠深度指数が従来の睡眠ステージよりもニュアンスな睡眠構造を捉えていた。
- 参考スコア(独自算出の注目度): 15.197165195697666
- License:
- Abstract: Traditional sleep staging categorizes sleep and wakefulness into five coarse-grained classes, overlooking subtle variations within each stage. It provides limited information about the duration of arousal and may hinder research on sleep fragmentation and relevant sleep disorders. To address this issue, we propose a deep learning method for automatic and scalable annotation of continuous sleep depth index (SDI) using existing discrete sleep staging labels. Our approach was validated using polysomnography from over 10,000 recordings across four large-scale cohorts. The results showcased a strong correlation between the decrease in sleep depth index and the increase in duration of arousal. Specific case studies indicated that the sleep depth index captured more nuanced sleep structures than conventional sleep staging. Gaussian mixture models based on the digital biomarkers extracted from the sleep depth index identified two subtypes of sleep, where participants in the disturbed sleep group had a higher prevalence of sleep apnea, insomnia, poor subjective sleep quality, hypertension, and cardiovascular disease. The disturbed subtype was associated with a 42% (hazard ratio 1.42, 95% CI 1.24-1.62) increased risk of mortality and a 29% (hazard ratio 1.29, 95% CI 1.00-1.67) increased risk of fatal cardiovascular disease. Our study underscores the utility of the proposed method for continuous sleep depth annotation, which could reveal more detailed information about the sleep structure and yield novel digital biomarkers for routine clinical use in sleep medicine.
- Abstract(参考訳): 伝統的な睡眠ステージは、睡眠と覚醒を5つの粗いクラスに分類し、各ステージの微妙な変化を見越す。
覚醒期間に関する限られた情報を提供し、睡眠断片化や関連する睡眠障害の研究を妨げる可能性がある。
この問題に対処するために,既存の個別睡眠ステージリングラベルを用いた連続睡眠深度指標(SDI)の自動的かつスケーラブルなアノテーションの深層学習手法を提案する。
大規模コホート4種にまたがる1万以上の録音からポリソムノグラフィーを用いて本手法の有効性を検証した。
その結果,睡眠深度指数の低下と覚醒期間の増加との間には強い相関が認められた。
特定のケーススタディでは、睡眠深度指数が従来の睡眠ステージよりもニュアンスな睡眠構造を捉えていた。
睡眠深度指数から抽出したデジタルバイオマーカーに基づくガウス混合モデルでは,睡眠不足群では睡眠時無呼吸,不眠,主観的睡眠の質の低下,高血圧,心血管疾患の頻度が高い2種類の睡眠を同定した。
障害したサブタイプは42%(ハザード比1.42,95%CI1.24-1.62)、死亡リスク29%(ハザード比1.29,95%CI1.00-1.67)であった。
本研究は, 連続睡眠深度診断法の有用性を概説し, 睡眠構造についてより詳細な情報を提供し, 日常的な臨床用デジタルバイオマーカーを提供する。
関連論文リスト
- Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
本研究の目的は,就寝時の頻繁な動きによる睡眠不足など,エビデンスに基づく評価を提供する機械学習ベースの睡眠評価モデルを構築することである。
睡眠音イベントの抽出,VAEを用いた潜時表現の抽出,GMMによるクラスタリング,主観的睡眠評価のためのLSTMトレーニングは94.8%の精度で睡眠満足度を識別した。
論文 参考訳(メタデータ) (2024-04-16T05:56:41Z) - SI-SD: Sleep Interpreter through awake-guided cross-subject Semantic Decoding [5.283755248013948]
我々は、新しい認知神経科学実験を設計し、覚醒と睡眠の間に134人の被験者から、包括的、十分に注意された脳波(EEG)データセットを収集した。
我々は、覚醒と睡眠の間のニューラル潜伏シーケンスの位置ワイドアライメントにより、睡眠意味のデコーディングを強化するSI-SDを開発した。
論文 参考訳(メタデータ) (2023-09-28T14:06:34Z) - EEG-based Sleep Staging with Hybrid Attention [4.718295968108302]
我々は、HASS(Hybrid Attention EEG Sleep Staging)と呼ばれる新しいフレームワークを提案する。
提案手法は,睡眠時脳波信号の空間的・時間的関係を捉えることの難しさを軽減する。
論文 参考訳(メタデータ) (2023-05-16T15:37:32Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
単チャンネル脳波(EEG)、脳電図(EOG)、筋電図(EMG)、心電図(ECG)などの単純なセンサーを用いた睡眠段階分類が注目されている。
本研究では、次の睡眠段階を予測する睡眠モデルを提案し、睡眠分類精度を向上させるために使用した。
論文 参考訳(メタデータ) (2023-02-17T07:37:54Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
先行学習を失うことなく、新しいタスクやスキルを連続して学習することは、人工ニューラルネットワークと生物学的ニューラルネットワークの両方にとって、計算上の課題である。
本稿では,3つの異なる睡眠成分のモデル化が,人工ニューラルネットワークの連続学習にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2022-09-09T13:45:27Z) - Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing [4.268772592648502]
睡眠は、高齢者の最適な認知機能に不可欠なライフスタイルに関連する要因の1つである。
伝統的に睡眠情報を取得する方法は、時間がかかり、効率が悪く、測定不能であり、患者の主観的な経験に限られる。
本研究では,ルールベース自然言語処理(NLP)アルゴリズム,機械学習モデル,およびLarge Language Model(LLM)ベースのNLPアルゴリズムを開発し,睡眠関連概念の抽出を自動化する。
論文 参考訳(メタデータ) (2022-03-08T21:20:19Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。