論文の概要: Continuous Sleep Depth Index Annotation with Deep Learning Yields Novel Digital Biomarkers for Sleep Health
- arxiv url: http://arxiv.org/abs/2407.04753v2
- Date: Sun, 08 Dec 2024 08:12:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:47:12.193929
- Title: Continuous Sleep Depth Index Annotation with Deep Learning Yields Novel Digital Biomarkers for Sleep Health
- Title(参考訳): 深層学習による連続睡眠深度指標アノテーション : 睡眠健康のための新しいデジタルバイオマーカー
- Authors: Songchi Zhou, Ge Song, Haoqi Sun, Yue Leng, M. Brandon Westover, Shenda Hong,
- Abstract要約: 連続型睡眠深度診断法は、睡眠構造に関するより詳細な情報を明らかにし、睡眠医学における定期的な臨床使用のための新しいデジタルバイオマーカーを提供する。
ケーススタディでは、睡眠深度指数が従来の睡眠ステージよりもニュアンスな睡眠構造を捉えていた。
- 参考スコア(独自算出の注目度): 15.197165195697666
- License:
- Abstract: Traditional sleep staging categorizes sleep and wakefulness into five coarse-grained classes, overlooking subtle variations within each stage. It provides limited information about the duration of arousal and may hinder research on sleep fragmentation and relevant sleep disorders. To address this issue, we propose a deep learning method for automatic and scalable annotation of continuous sleep depth index (SDI) using existing discrete sleep staging labels. Our approach was validated using polysomnography from over 10,000 recordings across four large-scale cohorts. The results showcased a strong correlation between the decrease in sleep depth index and the increase in duration of arousal. Specific case studies indicated that the sleep depth index captured more nuanced sleep structures than conventional sleep staging. Gaussian mixture models based on the digital biomarkers extracted from the sleep depth index identified two subtypes of sleep, where participants in the disturbed sleep group had a higher prevalence of sleep apnea, insomnia, poor subjective sleep quality, hypertension, and cardiovascular disease. The disturbed subtype was associated with a 42% (hazard ratio 1.42, 95% CI 1.24-1.62) increased risk of mortality and a 29% (hazard ratio 1.29, 95% CI 1.00-1.67) increased risk of fatal cardiovascular disease. Our study underscores the utility of the proposed method for continuous sleep depth annotation, which could reveal more detailed information about the sleep structure and yield novel digital biomarkers for routine clinical use in sleep medicine.
- Abstract(参考訳): 伝統的な睡眠ステージは、睡眠と覚醒を5つの粗いクラスに分類し、各ステージの微妙な変化を見越す。
覚醒期間に関する限られた情報を提供し、睡眠断片化や関連する睡眠障害の研究を妨げる可能性がある。
この問題に対処するために,既存の個別睡眠ステージリングラベルを用いた連続睡眠深度指標(SDI)の自動的かつスケーラブルなアノテーションの深層学習手法を提案する。
大規模コホート4種にまたがる1万以上の録音からポリソムノグラフィーを用いて本手法の有効性を検証した。
その結果,睡眠深度指数の低下と覚醒期間の増加との間には強い相関が認められた。
特定のケーススタディでは、睡眠深度指数が従来の睡眠ステージよりもニュアンスな睡眠構造を捉えていた。
睡眠深度指数から抽出したデジタルバイオマーカーに基づくガウス混合モデルでは,睡眠不足群では睡眠時無呼吸,不眠,主観的睡眠の質の低下,高血圧,心血管疾患の頻度が高い2種類の睡眠を同定した。
障害したサブタイプは42%(ハザード比1.42,95%CI1.24-1.62)、死亡リスク29%(ハザード比1.29,95%CI1.00-1.67)であった。
本研究は, 連続睡眠深度診断法の有用性を概説し, 睡眠構造についてより詳細な情報を提供し, 日常的な臨床用デジタルバイオマーカーを提供する。
関連論文リスト
- Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
本研究の目的は,就寝時の頻繁な動きによる睡眠不足など,エビデンスに基づく評価を提供する機械学習ベースの睡眠評価モデルを構築することである。
睡眠音イベントの抽出,VAEを用いた潜時表現の抽出,GMMによるクラスタリング,主観的睡眠評価のためのLSTMトレーニングは94.8%の精度で睡眠満足度を識別した。
論文 参考訳(メタデータ) (2024-04-16T05:56:41Z) - Domain Invariant Representation Learning and Sleep Dynamics Modeling for
Automatic Sleep Staging [6.86283473936335]
ニューラルネットワークに基づく睡眠ステージングモデルDREAMを提案し,生理的信号とモデル睡眠ダイナミクスから領域一般化表現を学習する。
DREAMは、様々な被験者の睡眠信号から睡眠関連および被写体不変表現を学習し、シーケンシャル信号セグメントと睡眠ステージ間の相互作用を捉えて睡眠ダイナミクスをモデル化する。
睡眠ステージ予測実験,ケーススタディ,ラベルなしデータの使用,不確実性など,DREAMの優位性を示すための総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2023-12-06T00:28:08Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
先行学習を失うことなく、新しいタスクやスキルを連続して学習することは、人工ニューラルネットワークと生物学的ニューラルネットワークの両方にとって、計算上の課題である。
本稿では,3つの異なる睡眠成分のモデル化が,人工ニューラルネットワークの連続学習にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2022-09-09T13:45:27Z) - A Review of the Non-Invasive Techniques for Monitoring Different Aspects of Sleep [19.49661647406365]
睡眠モニタリングのための研究が進められており、睡眠行動を理解するための重要なツールとなっている。
睡眠分析のための金の標準法は、臨床環境で行うポリソムノグラフィ(PSG)であるが、この方法は高価であり、長期使用には複雑である。
家庭内睡眠モニタリングに安価で使い易いウェアラブルと非ウェアラブルの両方を用いた様々なソリューションが提案されている。
論文 参考訳(メタデータ) (2021-04-27T04:12:43Z) - On Hallucination and Predictive Uncertainty in Conditional Language
Generation [76.18783678114325]
高い予測の不確実性は幻覚の確率が高い。
認識的不確実性は、アレエータ的あるいは全体的不確実性よりも幻覚の指標である。
提案したビームサーチ変種との幻覚を抑えるため、標準メートル法で取引性能のより良い結果を得るのに役立ちます。
論文 参考訳(メタデータ) (2021-03-28T00:32:27Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
ポリソムノグラムで睡眠イベントを共同検出する,単一のディープニューラルネットワークアーキテクチャを設計した。
モデルの性能は,F1,精度,リコールスコア,および指標値と臨床値との相関で定量化した。
論文 参考訳(メタデータ) (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - N=1 Modelling of Lifestyle Impact on SleepPerformance [2.9073923339818006]
睡眠は健康な生活に欠かせない。
最近の研究にもかかわらず、実際の環境でパーソナライズされた睡眠モデルを作成することは困難だった。
本研究では,日常活動と睡眠品質の因果関係を同定する睡眠モデルを提案する。
論文 参考訳(メタデータ) (2020-06-18T22:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。