論文の概要: K-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data
- arxiv url: http://arxiv.org/abs/2407.04836v1
- Date: Fri, 5 Jul 2024 19:44:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:26:54.664518
- Title: K-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data
- Title(参考訳): セキュアな暗号関係データを用いたK-Nearest Neighbor分類
- Authors: Gunjan Mishra, Kalyani Pathak, Yash Mishra, Pragati Jadhav, Vaishali Keshervani,
- Abstract要約: データが暗号化されているパブリッククラウド環境では、クラウドサービスプロバイダは通常、暗号化キーを制御する。
この状況は、従来のプライバシー保護分類システムを不適切なものにしている。
我々は、暗号化されたアウトソースデータに対して、セキュアなk近傍の分類アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Data mining has various real-time applications in fields such as finance telecommunications, biology, and government. Classification is a primary task in data mining. With the rise of cloud computing, users can outsource and access their data from anywhere, offloading data and it is processing to the cloud. However, in public cloud environments while data is often encrypted, the cloud service provider typically controls the encryption keys, meaning they can potentially access the data at any time. This situation makes traditional privacy-preserving classification systems inadequate. The recommended protocol ensures data privacy, protects user queries, and conceals access patterns. Given that encrypted data on the cloud cannot be directly mined, we focus on a secure k nearest neighbor classification algorithm for encrypted, outsourced data. This approach maintains the privacy of user queries and data access patterns while allowing effective data mining operations to be conducted securely in the cloud. With cloud computing, particularly in public cloud environments, the encryption of data necessitates advanced methods like secure k nearest neighbor algorithms to ensure privacy and functionality in data mining. This innovation protects sensitive information and user privacy, addressing the challenges posed by traditional systems where cloud providers control encryption keys.
- Abstract(参考訳): データマイニングは、金融通信、生物学、政府など、様々な分野でリアルタイムに応用されている。
分類はデータマイニングにおける主要な課題である。
クラウドコンピューティングの台頭により、ユーザはどこからでもデータをアウトソースしてアクセスでき、データをオフロードして、それをクラウドに処理できる。
しかし、しばしばデータが暗号化されるパブリッククラウド環境では、クラウドサービスプロバイダは通常、暗号化キーを制御するため、いつでもデータにアクセスすることができる。
この状況は、従来のプライバシー保護分類システムを不適切なものにしている。
この推奨プロトコルはデータのプライバシを確保し、ユーザクエリを保護し、アクセスパターンを隠蔽する。
クラウド上の暗号化されたデータは直接マイニングできないため、暗号化されたアウトソースされたデータに対して、セキュアなk近傍の分類アルゴリズムに焦点を当てる。
このアプローチでは,ユーザクエリとデータアクセスパターンのプライバシを維持しながら,効率的なデータマイニング操作をクラウド上でセキュアに行うことができる。
クラウドコンピューティング、特にパブリッククラウド環境では、データの暗号化は、データマイニングにおけるプライバシと機能を確保するために、近隣のアルゴリズムをセキュアにするための高度な方法を必要とする。
このイノベーションは機密情報とユーザのプライバシを保護し、クラウドプロバイダが暗号化キーを制御する従来のシステムによる課題に対処する。
関連論文リスト
- CCA-Secure Key-Aggregate Proxy Re-Encryption for Secure Cloud Storage [1.4610685586329806]
クラウドストレージにおけるデータ保護は、クラウド産業の存続の鍵である。
Proxy Re-Encryptionスキームにより、ユーザーは再暗号化キーを使用して暗号文を他の暗号文に変換することができる。
近年,C-PREの鍵記憶コストを一定サイズに削減し,最初のキーアグリゲートプロキシ再暗号化方式を提案する。
論文 参考訳(メタデータ) (2024-10-10T17:02:49Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
本稿では,新しいセキュアデータベースシステムであるEnc2DBを紹介する。
本稿では,マイクロベンチマークテストと自己適応型モードスイッチ戦略を提案し,与えられたクエリに応答する最適な実行パス(暗号やTEE)を選択する。
また、クエリ処理を高速化するために、ネイティブコストモデルやクエリと互換性のある暗号文インデックスを設計、実装する。
論文 参考訳(メタデータ) (2024-04-10T08:11:12Z) - Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud [0.0]
暗号化は、不正アクセス、データ漏洩、そしてその結果の金銭的損失、評判の損害、法的問題を防ぐことができる。
Sanyashiらは、クラウド上のプライバシー保護のための$k$-NN計算を容易にする暗号化スキームを提案した。
我々は、効率的なアルゴリズムを与え、その暗号方式が暗号文のみの攻撃(COA)に弱いことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-14T03:53:01Z) - A Survey on Property-Preserving Database Encryption Techniques in the Cloud [0.0]
アウトソースされたデータのセキュリティと機密性には懸念がある。
報告では、クラウドデータベースサービスとの関係でデータを保存するのに使用される一般的な暗号化技術について調査している。
論文 参考訳(メタデータ) (2023-12-19T11:50:31Z) - Protecting Sensitive Tabular Data in Hybrid Clouds [0.0]
ヘルスケアやファイナンスといった規制された業界は、データとワークロードの一部をパブリッククラウドに移行し始めている。
病院の実際のユースケースにおいて,ハイブリッドクラウドを使用したビッグデータ分析のセキュリティとパフォーマンスの課題に対処する。
論文 参考訳(メタデータ) (2023-12-03T11:20:24Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - A Privacy-Preserving Outsourced Data Model in Cloud Environment [8.176020822058586]
データセキュリティとプライバシの問題は、機械学習ツールの使用にとって重要な障害のひとつだ。
機械学習効率を損なうことなくデータのプライバシを保護するプライバシ保存モデルを提案する。
Fogノードは、データ所有者からノイズ付加データを収集し、ストレージ、計算、分類タスクの実行のためにクラウドプラットフォームに移行する。
論文 参考訳(メタデータ) (2022-11-24T11:27:30Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
トランスフォーマーモデルのプライバシ保護推論は、クラウドサービスユーザの要求に基づいています。
我々は、事前訓練されたモデルのプライバシ保存推論を可能にするトランスフォーマーの近似アプローチである$textitTHE-X$を紹介した。
論文 参考訳(メタデータ) (2022-06-01T03:49:18Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z) - NeuraCrypt: Hiding Private Health Data via Random Neural Networks for
Public Training [64.54200987493573]
我々は,ランダムな深層ニューラルネットワークに基づくプライベート符号化方式であるNeuraCryptを提案する。
NeuraCryptは、データ所有者のみが知っているランダムに構築されたニューラルネットワークを使用して、生の患者データをエンコードする。
我々は,NeuraCryptが,様々なX線タスクの非プライベートベースラインに対して,競合精度を達成することを示す。
論文 参考訳(メタデータ) (2021-06-04T13:42:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。