A Bayesian Approach to Weakly-supervised Laparoscopic Image Segmentation
- URL: http://arxiv.org/abs/2410.08509v1
- Date: Fri, 11 Oct 2024 04:19:48 GMT
- Title: A Bayesian Approach to Weakly-supervised Laparoscopic Image Segmentation
- Authors: Zhou Zheng, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kensaku Mori,
- Abstract summary: We study weakly-supervised laparoscopic image segmentation with sparse annotations.
We introduce a novel Bayesian deep learning approach designed to enhance both the accuracy and interpretability of the model's segmentation.
- Score: 1.9639956888747314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study weakly-supervised laparoscopic image segmentation with sparse annotations. We introduce a novel Bayesian deep learning approach designed to enhance both the accuracy and interpretability of the model's segmentation, founded upon a comprehensive Bayesian framework, ensuring a robust and theoretically validated method. Our approach diverges from conventional methods that directly train using observed images and their corresponding weak annotations. Instead, we estimate the joint distribution of both images and labels given the acquired data. This facilitates the sampling of images and their high-quality pseudo-labels, enabling the training of a generalizable segmentation model. Each component of our model is expressed through probabilistic formulations, providing a coherent and interpretable structure. This probabilistic nature benefits accurate and practical learning from sparse annotations and equips our model with the ability to quantify uncertainty. Extensive evaluations with two public laparoscopic datasets demonstrated the efficacy of our method, which consistently outperformed existing methods. Furthermore, our method was adapted for scribble-supervised cardiac multi-structure segmentation, presenting competitive performance compared to previous methods. The code is available at https://github.com/MoriLabNU/Bayesian_WSS.
Related papers
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
arXiv Detail & Related papers (2024-10-17T12:31:37Z) - Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
We show that optimal fair representations possess several useful structural properties.
We then show that these approxing problems can be solved efficiently via concave programming methods.
arXiv Detail & Related papers (2024-09-26T08:46:48Z) - Explainable Metric Learning for Deflating Data Bias [2.977255700811213]
We present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability.
Our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it.
arXiv Detail & Related papers (2024-07-05T21:07:27Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Exploring Compositional Visual Generation with Latent Classifier
Guidance [19.48538300223431]
We train latent diffusion models and auxiliary latent classifiers to facilitate non-linear navigation of latent representation generation.
We show that such conditional generation achieved by latent classifier guidance provably maximizes a lower bound of the conditional log probability during training.
We show that this paradigm based on latent classifier guidance is agnostic to pre-trained generative models, and present competitive results for both image generation and sequential manipulation of real and synthetic images.
arXiv Detail & Related papers (2023-04-25T03:02:58Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
The proposed approach is tested on the classification of well established benchmark texture databases and on a practical task of plant species recognition.
The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image.
arXiv Detail & Related papers (2020-11-14T00:04:07Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.