論文の概要: Improving ensemble extreme precipitation forecasts using generative artificial intelligence
- arxiv url: http://arxiv.org/abs/2407.04882v1
- Date: Fri, 5 Jul 2024 22:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:07:12.931601
- Title: Improving ensemble extreme precipitation forecasts using generative artificial intelligence
- Title(参考訳): 生成人工知能を用いたアンサンブル極端降水予測の改善
- Authors: Yingkai Sha, Ryan A. Sobash, David John Gagne II,
- Abstract要約: 大陸間における極端降水現象の確率予測を改善するために, アンサンブル後処理法を開発した。
この方法は、バイアス補正のための3次元視覚変換器(ViT)と、生成人工知能(AI)法である潜在拡散モデル(LDM)とを6時間後の降水アンサンブル予測に組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An ensemble post-processing method is developed to improve the probabilistic forecasts of extreme precipitation events across the conterminous United States (CONUS). The method combines a 3-D Vision Transformer (ViT) for bias correction with a Latent Diffusion Model (LDM), a generative Artificial Intelligence (AI) method, to post-process 6-hourly precipitation ensemble forecasts and produce an enlarged generative ensemble that contains spatiotemporally consistent precipitation trajectories. These trajectories are expected to improve the characterization of extreme precipitation events and offer skillful multi-day accumulated and 6-hourly precipitation guidance. The method is tested using the Global Ensemble Forecast System (GEFS) precipitation forecasts out to day 6 and is verified against the Climate-Calibrated Precipitation Analysis (CCPA) data. Verification results indicate that the method generated skillful ensemble members with improved Continuous Ranked Probabilistic Skill Scores (CRPSSs) and Brier Skill Scores (BSSs) over the raw operational GEFS and a multivariate statistical post-processing baseline. It showed skillful and reliable probabilities for events at extreme precipitation thresholds. Explainability studies were further conducted, which revealed the decision-making process of the method and confirmed its effectiveness on ensemble member generation. This work introduces a novel, generative-AI-based approach to address the limitation of small numerical ensembles and the need for larger ensembles to identify extreme precipitation events.
- Abstract(参考訳): 大陸間(CONUS)における極端降水現象の確率的予測を改善するために,アンサンブル後処理法を開発した。
この方法は、バイアス補正のための3次元視覚変換器(ViT)と、生成人工知能(AI)法である潜在拡散モデル(LDM)とを組み合わせて、6時間の降水アンサンブル予測を後処理し、時空間的に一貫した降水軌跡を含む拡大した生成アンサンブルを生成する。
これらの軌道は, 極端降水現象のキャラクタリゼーションを改善し, 熟練した多日降水誘導と6時間降水誘導を提供することが期待されている。
本手法は,地球環境予報システム (GEFS) による6日目の降水予測を用いて検証し,気候キャリブレーション降水分析 (CCPA) データと比較した。
その結果,実運用GEFSおよび多変量統計後処理ベースライン上で,CRPSS(Continuous Ranked Probabilistic Skill Scores)とBridge Skill Scores(Brier Skill Scores)を改良した巧妙なアンサンブル構成体を生成した。
極度の降水閾値のイベントに対して、巧妙で信頼性の高い確率を示した。
さらに説明可能性調査を行い, 方法の決定過程を明らかにし, アンサンブルメンバー生成における有効性を確認した。
この研究は、小さな数値アンサンブルの制限に対処し、極端な降水イベントを特定するためにより大きなアンサンブルを必要とする新しい、生成型AIベースのアプローチを導入する。
関連論文リスト
- PostCast: Generalizable Postprocessing for Precipitation Nowcasting via Unsupervised Blurriness Modeling [85.56969895866243]
本稿では,ぼやけた予測とそれに対応する土台真実のペアによるトレーニングを必要とせずに,ぼやけを解消するための教師なしポストプロセッシング手法を提案する。
非条件相関を任意のぼかしモードに適応させるため、ゼロショットのぼかしカーネル推定機構とオートスケールの denoise ガイダンス戦略を導入する。
論文 参考訳(メタデータ) (2024-10-08T08:38:23Z) - Continuous Ensemble Weather Forecasting with Diffusion models [10.730406954385927]
連続アンサンブル予測は拡散モデルにおけるアンサンブル予測をサンプリングするための新しいフレキシブルな手法である。
時間的に一貫したアンサンブル軌道を、自動回帰ステップなしで完全に並列に生成することができる。
本手法は, 確率特性のよいグローバル気象予報において, 競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-07T18:51:23Z) - STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting [9.177158814568887]
SATAを時間的アライメントモジュールとし、STAUを時間的アライメント特徴抽出器とする、時間的アライメントに基づく短期降水予測モデル。
衛星データとERA5データに基づいて、我々のモデルはRMSEの12.61%の改善を達成し、最先端の手法と比較した。
論文 参考訳(メタデータ) (2024-09-06T10:28:52Z) - Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
日次累積降水量の予測を後処理するための不確実性を考慮した深層学習モデルについて検討する。
本研究では,様々な最先端モデルを比較し,よく知られたSDE-Netの変種を提案する。
その結果,すべてのディープラーニングモデルは,平均的ベースラインNWPソリューションよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-08-28T16:31:40Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
コンボリューション・ニューラル・ネットワーク(CNN)とコンボリューション・コンボリューション・アロイング・モデル(CAM)予測を併用する。
CGANは決定論的CAM予測から合成アンサンブルメンバーを作成するように設計されている。
この手法は,BSS(Brier Skill Score)を最大20%の精度で予測できる。
論文 参考訳(メタデータ) (2023-10-09T18:02:11Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Towards replacing precipitation ensemble predictions systems using
machine learning [0.0]
本研究では,高分解能降水に対するアンサンブル気象予測のための新しい手法を提案する。
本手法は,複雑な降水パターンを学習するために生成的対向ネットワークを用いる。
本研究では, 未確認高解像度の降水アンサンブル部材の現実的な生成の可能性を示す。
論文 参考訳(メタデータ) (2023-04-20T12:20:35Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。