論文の概要: SID: Stereo Image Dataset for Autonomous Driving in Adverse Conditions
- arxiv url: http://arxiv.org/abs/2407.04908v1
- Date: Sat, 6 Jul 2024 00:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:57:27.515219
- Title: SID: Stereo Image Dataset for Autonomous Driving in Adverse Conditions
- Title(参考訳): SID: 逆条件下での自律運転のためのステレオ画像データセット
- Authors: Zaid A. El-Shair, Abdalmalek Abu-raddaha, Aaron Cofield, Hisham Alawneh, Mohamed Aladem, Yazan Hamzeh, Samir A. Rawashdeh,
- Abstract要約: 我々は,大規模なステレオ画像データセットであるStereo Image dataset (SID)を紹介した。
データセットには、天気状況、日時、場所、道路状況のシーケンスレベルのアノテーションと、カメラレンズの汚れの例が含まれている。
これらのアルゴリズムは、レンズの汚れのような困難な状況に対処する場合でも、様々な天候や照明条件をまたいで一貫した信頼性の高い操作をサポートする。
- 参考スコア(独自算出の注目度): 1.0805335573008565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust perception is critical for autonomous driving, especially under adverse weather and lighting conditions that commonly occur in real-world environments. In this paper, we introduce the Stereo Image Dataset (SID), a large-scale stereo-image dataset that captures a wide spectrum of challenging real-world environmental scenarios. Recorded at a rate of 20 Hz using a ZED stereo camera mounted on a vehicle, SID consists of 27 sequences totaling over 178k stereo image pairs that showcase conditions from clear skies to heavy snow, captured during the day, dusk, and night. The dataset includes detailed sequence-level annotations for weather conditions, time of day, location, and road conditions, along with instances of camera lens soiling, offering a realistic representation of the challenges in autonomous navigation. Our work aims to address a notable gap in research for autonomous driving systems by presenting high-fidelity stereo images essential for the development and testing of advanced perception algorithms. These algorithms support consistent and reliable operation across variable weather and lighting conditions, even when handling challenging situations like lens soiling. SID is publicly available at: https://doi.org/10.7302/esz6-nv83.
- Abstract(参考訳): ロバストな認識は、特に現実の環境でよく起こる悪天候や照明条件下では、自律運転に不可欠である。
本稿では,大規模なステレオ画像データセットであるStereo Image Dataset(SID)を紹介する。
車両に搭載されたZEDステレオカメラで20Hzの速度で記録されたSIDは、178K以上のステレオ画像ペアからなる27のシーケンスで構成され、晴れた空から重い雪まで、日中、夕暮れ、夜の間に撮影される。
データセットには、天気状況、日時、場所、道路状況に関する詳細なシーケンスレベルのアノテーションと、カメラレンズの汚れの例が含まれており、自律ナビゲーションにおける課題の現実的な表現を提供する。
本研究の目的は、高度な認識アルゴリズムの開発とテストに不可欠な高忠実度ステレオ画像を提供することにより、自律走行システムの研究における顕著なギャップを解決することである。
これらのアルゴリズムは、レンズの汚れのような困難な状況に対処する場合でも、様々な天候や照明条件をまたいで一貫した信頼性の高い操作をサポートする。
SID は https://doi.org/10.7302/esz6-nv83 で公開されている。
関連論文リスト
- PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow [0.0]
本稿では,エンジン5を用いて生成した高忠実度ステレオ深度およびシーンフローグラウンド真理データであるダイナミックウェザードライビングデータセットを紹介する。
特に、このデータセットには、様々な動的気象シナリオを再現する、同期された高解像度ステレオ画像シーケンスが含まれている。
Unreal-D3を用いたいくつかの重要な自動運転タスクのためのベンチマークが確立され、最先端モデルの性能を計測し、向上している。
論文 参考訳(メタデータ) (2024-06-11T19:21:46Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
夜間の運転シーンでは、不十分で不均一な照明が暗闇の中でシーンを遮蔽し、画質と可視性が低下する。
雨天時の運転シーンに適した画像デライニング・フレームワークを開発した。
雨の人工物を取り除き、風景表現を豊かにし、有用な情報を復元することを目的としている。
論文 参考訳(メタデータ) (2024-02-28T09:02:33Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
近年,Bird's-Eye View (BEV) の知覚が注目されている。
自動運転のためのデータ駆動シミュレーションは、最近の研究の焦点となっている。
本稿では,現実的かつ空間的に一貫した周辺画像を合成する条件生成モデルであるBEVGenを提案する。
論文 参考訳(メタデータ) (2023-01-11T18:39:34Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - LiDAR-as-Camera for End-to-End Driving [1.0323063834827415]
Ouster LiDARは、深度、強度、周囲の放射線チャンネルを備えたサラウンドビューのLiDARイメージを出力することができる。
これらの測定は、同じセンサーから始まり、時間と空間で完全に整列する。
このようなLiDAR画像は、実車走行追従作業に十分であり、テスト条件下では少なくともカメラベースモデルに対して等しく動作することを示す。
研究の第2の方向において、非政治予測シーケンスの時間的スムーズさは、一般的に使用される平均絶対誤差と実際のオンライン運転能力と等しく相関することが明らかとなった。
論文 参考訳(メタデータ) (2022-06-30T10:06:49Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - DSEC: A Stereo Event Camera Dataset for Driving Scenarios [55.79329250951028]
本研究は,イベントカメラを用いた初の高分解能大規模ステレオデータセットを提案する。
データセットは、様々な照明条件で駆動により収集された53のシーケンスを含む。
イベントベースステレオアルゴリズムの開発と評価のための基礎的な真相の相違を提供する。
論文 参考訳(メタデータ) (2021-03-10T12:10:33Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。