論文の概要: PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow
- arxiv url: http://arxiv.org/abs/2406.07667v1
- Date: Tue, 11 Jun 2024 19:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:25:46.280957
- Title: PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow
- Title(参考訳): PLT-D3:ステレオ深度とシーンフローのための高忠実度動的運転シミュレーションデータセット
- Authors: Joshua Tokarsky, Ibrahim Abdulhafiz, Satya Ayyalasomayajula, Mostafa Mohsen, Navya G. Rao, Adam Forbes,
- Abstract要約: 本稿では,エンジン5を用いて生成した高忠実度ステレオ深度およびシーンフローグラウンド真理データであるダイナミックウェザードライビングデータセットを紹介する。
特に、このデータセットには、様々な動的気象シナリオを再現する、同期された高解像度ステレオ画像シーケンスが含まれている。
Unreal-D3を用いたいくつかの重要な自動運転タスクのためのベンチマークが確立され、最先端モデルの性能を計測し、向上している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous driving has experienced remarkable progress, bolstered by innovations in computational hardware and sophisticated deep learning methodologies. The foundation of these advancements rests on the availability and quality of datasets, which are crucial for the development and refinement of dependable and versatile autonomous driving algorithms. While numerous datasets have been developed to support the evolution of autonomous driving perception technologies, few offer the diversity required to thoroughly test and enhance system robustness under varied weather conditions. Many public datasets lack the comprehensive coverage of challenging weather scenarios and detailed, high-resolution data, which are critical for training and validating advanced autonomous-driving perception models. In this paper, we introduce PLT-D3; a Dynamic-weather Driving Dataset, designed specifically to enhance autonomous driving systems' adaptability to diverse weather conditions. PLT-D3 provides high-fidelity stereo depth and scene flow ground truth data generated using Unreal Engine 5. In particular, this dataset includes synchronized high-resolution stereo image sequences that replicate a wide array of dynamic weather scenarios including rain, snow, fog, and diverse lighting conditions, offering an unprecedented level of realism in simulation-based testing. The primary aim of PLT-D3 is to address the scarcity of comprehensive training and testing resources that can simulate real-world weather variations. Benchmarks have been established for several critical autonomous driving tasks using PLT-D3, such as depth estimation, optical flow and scene-flow to measure and enhance the performance of state-of-the-art models.
- Abstract(参考訳): 自律運転は、計算ハードウェアと高度なディープラーニング方法論の革新に支えられ、目覚ましい進歩を遂げてきた。
これらの進歩の基盤はデータセットの可用性と品質に依存しており、信頼性と汎用的な自律運転アルゴリズムの開発と改良に不可欠である。
自律運転認識技術の進化を支援するために多くのデータセットが開発されているが、様々な気象条件下でシステムの堅牢性を徹底的にテストし強化するために必要な多様性を提供するものはほとんどない。
多くの公開データセットは、挑戦的な気象シナリオと詳細な高解像度データに関する包括的なカバレッジを欠いている。
本稿では,各種気象条件に対する自律運転システムの適応性向上を目的とした動的天候駆動データセットであるPLT-D3を紹介する。
PLT-D3は、Unreal Engine 5を用いて生成された高忠実度ステレオ深度およびシーンフローグラウンド真理データを提供する。
特に、このデータセットには、雨、雪、霧、様々な照明条件を含む幅広い動的気象シナリオを再現する、同期された高解像度ステレオ画像シーケンスが含まれており、シミュレーションベースのテストでは前例のないレベルのリアリズムを提供する。
PLT-D3の主な目的は、現実世界の気象変動をシミュレートできる総合的な訓練と試験資源の不足に対処することである。
PLT-D3を用いたいくつかの重要な自律運転タスクのためのベンチマークが確立されている。
関連論文リスト
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
本研究では,現実的でクローズドループなシミュレーションフレームワークであるDrivingSphereを提案する。
その中核となる考え方は、4Dの世界表現を構築し、実生活と制御可能な運転シナリオを生成することである。
動的で現実的なシミュレーション環境を提供することで、DrivingSphereは自律運転アルゴリズムの包括的なテストと検証を可能にする。
論文 参考訳(メタデータ) (2024-11-18T03:00:33Z) - GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model [6.144680854063938]
GenDDSは、自律運転システムの運転シナリオを生成するための新しいアプローチである。
我々は、実際の運転ビデオを含むKITTIデータセットを使用して、モデルをトレーニングする。
実世界の運転シナリオの複雑さと変動性を密に再現した高品質な運転映像を,我々のモデルで生成できることを実証した。
論文 参考訳(メタデータ) (2024-08-28T15:37:44Z) - SCaRL- A Synthetic Multi-Modal Dataset for Autonomous Driving [0.0]
本稿では、自律運転ソリューションのトレーニングと検証を可能にするために、合成生成された新しいマルチモーダルデータセットであるSCaRLを提案する。
SCaRLはCARLA Simulatorに基づく大規模なデータセットであり、多様な動的シナリオとトラフィック条件のためのデータを提供する。
論文 参考訳(メタデータ) (2024-05-27T10:31:26Z) - S-NeRF++: Autonomous Driving Simulation via Neural Reconstruction and Generation [21.501865765631123]
S-NeRF++は神経再構成に基づく革新的な自律運転シミュレーションシステムである。
S-NeRF++は、nuScenesやradianceなど、広く使われている自動運転データセットでトレーニングされている。
システムは、ノイズとスパースLiDARデータを効果的に利用して、トレーニングを洗練し、奥行きの外れ値に対処する。
論文 参考訳(メタデータ) (2024-02-03T10:35:42Z) - Challenges of YOLO Series for Object Detection in Extremely Heavy Rain:
CALRA Simulator based Synthetic Evaluation Dataset [0.0]
様々なセンサー(LiDAR、レーダー、カメラなど)による物体検出は、自動運転車に優先されるべきである。
これらのセンサーは、多様な気象条件下で物体を正確に素早く検出する必要があるが、雨や雪、霧といった悪天候条件下で物体を一貫して検出することは困難である。
本研究では,降水条件から得られた雨滴データに基づいて,様々な降水条件下で多様なネットワークモデルをテストすることのできる新しいデータセットを構築した。
論文 参考訳(メタデータ) (2023-12-13T08:45:57Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
V2Xネットワークは、自動運転における協調的な認識を可能にしている。
データセットの欠如は、協調認識アルゴリズムの開発を著しく妨げている。
DOLPHINS: cOllaborative Perception を実現するためのデータセットである Harmonious と Inter connected Self-driving をリリースする。
論文 参考訳(メタデータ) (2022-07-15T17:07:07Z) - SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
Adaptation [152.60469768559878]
ShiFTは、自動運転のための最大規模のマルチタスク合成データセットである。
曇り、雨と霧の強さ、昼の時間、車と歩行者の密度を個別に連続的に変化させる。
私たちのデータセットとベンチマークツールキットはwww.vis.xyz/shift.comで公開されています。
論文 参考訳(メタデータ) (2022-06-16T17:59:52Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - DMD: A Large-Scale Multi-Modal Driver Monitoring Dataset for Attention
and Alertness Analysis [54.198237164152786]
視覚は運転監視システム(DMS)の最も豊かで費用対効果の高い技術である
十分に大規模で包括的なデータセットの欠如は、DMS開発の進展のボトルネックとなっている。
本稿では,実運転シナリオとシミュレーション運転シナリオを含む広範囲なデータセットであるドライバモニタリングデータセット(DMD)を紹介する。
論文 参考訳(メタデータ) (2020-08-27T12:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。