論文の概要: OmChat: A Recipe to Train Multimodal Language Models with Strong Long Context and Video Understanding
- arxiv url: http://arxiv.org/abs/2407.04923v1
- Date: Sat, 6 Jul 2024 02:16:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:57:27.497867
- Title: OmChat: A Recipe to Train Multimodal Language Models with Strong Long Context and Video Understanding
- Title(参考訳): OmChat: 長いコンテキストとビデオ理解によるマルチモーダル言語モデルのトレーニング
- Authors: Tiancheng Zhao, Qianqian Zhang, Kyusong Lee, Peng Liu, Lu Zhang, Chunxin Fang, Jiajia Liao, Kelei Jiang, Yibo Ma, Ruochen Xu,
- Abstract要約: OmChatは、長いコンテキストとビデオ理解タスクをうまく扱うように設計されたモデルである。
ダイナミックな視覚符号化プロセスを使用して、様々な解像度の画像を効果的に処理し、さまざまな画質の細部をキャプチャする。
OmChatは、最大512Kのコンテキスト長をサポートすることで、複数の画像やビデオを含むタスクにおいて、有望なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 34.17871202332497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce OmChat, a model designed to excel in handling long contexts and video understanding tasks. OmChat's new architecture standardizes how different visual inputs are processed, making it more efficient and adaptable. It uses a dynamic vision encoding process to effectively handle images of various resolutions, capturing fine details across a range of image qualities. OmChat utilizes an active progressive multimodal pretraining strategy, which gradually increases the model's capacity for long contexts and enhances its overall abilities. By selecting high-quality data during training, OmChat learns from the most relevant and informative data points. With support for a context length of up to 512K, OmChat demonstrates promising performance in tasks involving multiple images and videos, outperforming most open-source models in these benchmarks. Additionally, OmChat proposes a prompting strategy for unifying complex multimodal inputs including single image text, multi-image text and videos, and achieving competitive performance on single-image benchmarks. To further evaluate the model's capabilities, we proposed a benchmark dataset named Temporal Visual Needle in a Haystack. This dataset assesses OmChat's ability to comprehend temporal visual details within long videos. Our analysis highlights several key factors contributing to OmChat's success: support for any-aspect high image resolution, the active progressive pretraining strategy, and high-quality supervised fine-tuning datasets. This report provides a detailed overview of OmChat's capabilities and the strategies that enhance its performance in visual understanding.
- Abstract(参考訳): OmChatは、長いコンテキストやビデオ理解タスクの処理に優れるように設計されたモデルである。
OmChatの新しいアーキテクチャは、どのように異なる視覚入力が処理されるかを標準化し、より効率的で適応可能である。
ダイナミックな視覚符号化プロセスを使用して、様々な解像度の画像を効果的に処理し、さまざまな画質の細部をキャプチャする。
OmChatはアクティブなプログレッシブなマルチモーダル事前訓練戦略を利用し、長いコンテキストにおけるモデルの能力が徐々に向上し、全体的な能力が向上する。
トレーニング中に高品質なデータを選択することで、OmChatは最も関連性の高い情報的データポイントから学習する。
OmChatは、最大512Kのコンテキスト長をサポートすることで、複数の画像やビデオを含むタスクにおける有望なパフォーマンスを示し、これらのベンチマークでほとんどのオープンソースモデルを上回っている。
さらに、OmChatは、シングルイメージテキスト、マルチイメージテキストおよびビデオを含む複雑なマルチモーダルインプットを統一し、シングルイメージベンチマークで競合的なパフォーマンスを達成するためのプロンプト戦略を提案する。
モデルの性能をさらに評価するため,HaystackでTemporal Visual Needleというベンチマークデータセットを提案した。
このデータセットは、長いビデオ内で時間的視覚的詳細を理解するOmChatの能力を評価する。
分析では、OmChatの成功に寄与するいくつかの重要な要因として、任意のアスペクト高解像度のサポート、アクティブなプログレッシブ事前トレーニング戦略、高品質な教師付き微調整データセットを挙げている。
本報告では,OmChatの機能と視覚的理解における性能向上戦略について概説する。
関連論文リスト
- Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input [34.50993235961505]
Kangarooは、長いビデオを処理するという課題に対処するための強力なビデオLMMである。
データキュレーションシステムは、視覚言語による事前学習と命令チューニングのための高品質なアノテーションを備えた大規模データセットを構築する。
長いビデオに対応するための解像度と入力フレームの数を徐々に増やしたカリキュラムトレーニングパイプライン。
論文 参考訳(メタデータ) (2024-08-28T05:34:14Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - COSMO: COntrastive Streamlined MultimOdal Model with Interleaved
Pre-Training [119.03392147066093]
近年の自己回帰視覚言語モデルは, テキスト生成タスクでは優れているが, アライメントタスクでは課題に直面している。
テキスト生成モデルに対照的な損失を導入し,言語モデルを専用テキスト処理と適応型マルチモーダルデータ処理コンポーネントに分割する。
このギャップを埋めるために、この研究は、包括的なキャプションを備えた最初のインターリーブ付きビデオテキストデータセットであるVideoDatasetNameを導入した。
論文 参考訳(メタデータ) (2024-01-01T18:58:42Z) - TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding [20.037781644877388]
TimeChatは、長いビデオ理解のために特別に設計された、時間に敏感なマルチモーダルな大規模言語モデルである。
本モデルは,(1) フレームのタイムスタンプに視覚的コンテンツをバインドするタイムスタンプ対応フレームエンコーダ,(2) 長さの異なるビデオトークンシーケンスを生成するスライドビデオQ-Formerの2つの重要なアーキテクチャ的コントリビューションを含む。
論文 参考訳(メタデータ) (2023-12-04T17:09:52Z) - Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding [55.65727739645824]
Chat-UniViは、画像やビデオを含む会話を解釈し、関与できる統一ビジョン言語モデルである。
画像やビデオを一様に表現するために、ダイナミックな視覚トークンのセットを使用します。
我々はマルチスケール表現を活用し、モデルが高レベルなセマンティック概念と低レベルな視覚的詳細の両方を知覚できるようにする。
論文 参考訳(メタデータ) (2023-11-14T10:11:36Z) - Sparkles: Unlocking Chats Across Multiple Images for Multimodal Instruction-Following Models [60.81438804824749]
マルチモーダル命令追従モデルは、テキストと画像を統合することで機能を拡張する。
MiniGPT-4やLLaVAのような既存のモデルは、複数の画像を含むシナリオにおける対話コヒーレンスを維持する上で課題に直面している。
本稿では,単語レベルのインターリーブ・マルチイメージとテキストインタラクションに適した,最初の機械生成対話データセットであるSparklesDialogueを紹介する。
次に、複数の画像にまたがるオープンエンド対話のためのマルチモーダル命令追従モデルSparklesChatを紹介する。
論文 参考訳(メタデータ) (2023-08-31T05:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。