Achieving Tool Calling Functionality in LLMs Using Only Prompt Engineering Without Fine-Tuning
- URL: http://arxiv.org/abs/2407.04997v1
- Date: Sat, 6 Jul 2024 08:29:12 GMT
- Title: Achieving Tool Calling Functionality in LLMs Using Only Prompt Engineering Without Fine-Tuning
- Authors: Shengtao He,
- Abstract summary: Currently, the vast majority of locally deployed open-source large language models (LLMs) and some commercial model interfaces do not support stable tool calling functionality.
This paper proposes a method that enables LLMs to achieve stable tool calling capabilities using only prompt engineering and some ingenious code design.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, the vast majority of locally deployed open-source large language models (LLMs) and some commercial model interfaces do not support stable tool calling functionality. The existing solution involves fine-tuning LLMs, which results in significant time and computational resource consumption. This paper proposes a method that enables LLMs to achieve stable tool calling capabilities using only prompt engineering and some ingenious code design. We conducted experiments on multiple LLMs that lack tool calling capabilities across various tool calling tasks, achieving a success rate of 100%.
Related papers
- Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
Large language models (LLMs) need to ground their reasoning to real-world knowledge.
There remains challenges for fine-tuning LLM agents to invoke tools in multi-step reasoning problems.
We propose a new method for LLMs to better leverage tools in multi-step reasoning.
arXiv Detail & Related papers (2024-01-30T21:53:30Z) - MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning [38.610185966889226]
We propose MLLM-Tool, a system incorporating open-source large language models and multi-modal encoders.
The learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly.
Experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions.
arXiv Detail & Related papers (2024-01-19T14:44:37Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.