論文の概要: PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference
- arxiv url: http://arxiv.org/abs/2407.05010v1
- Date: Sat, 6 Jul 2024 09:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:28:00.696497
- Title: PRANCE: Joint Token-Optimization and Structural Channel-Pruning for Adaptive ViT Inference
- Title(参考訳): PRANCE:Adaptive ViT推論のための共同トークン最適化と構造チャネル解析
- Authors: Ye Li, Chen Tang, Yuan Meng, Jiajun Fan, Zenghao Chai, Xinzhu Ma, Zhi Wang, Wenwu Zhu,
- Abstract要約: PRANCEはVision Transformer圧縮フレームワークで、アクティベートされたチャネルを共同で最適化し、入力の特性に基づいてトークンを削減する。
本稿では,ViTの推論過程を逐次決定プロセスとしてモデル化する,新しい「結果と結果」学習機構を提案する。
我々のフレームワークは、プルーニング、マージング、プルーニングマージングといった様々なトークン最適化手法と互換性があることが示されている。
- 参考スコア(独自算出の注目度): 44.77064952091458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce PRANCE, a Vision Transformer compression framework that jointly optimizes the activated channels and reduces tokens, based on the characteristics of inputs. Specifically, PRANCE~ leverages adaptive token optimization strategies for a certain computational budget, aiming to accelerate ViTs' inference from a unified data and architectural perspective. However, the joint framework poses challenges to both architectural and decision-making aspects. Firstly, while ViTs inherently support variable-token inference, they do not facilitate dynamic computations for variable channels. To overcome this limitation, we propose a meta-network using weight-sharing techniques to support arbitrary channels of the Multi-head Self-Attention and Multi-layer Perceptron layers, serving as a foundational model for architectural decision-making. Second, simultaneously optimizing the structure of the meta-network and input data constitutes a combinatorial optimization problem with an extremely large decision space, reaching up to around $10^{14}$, making supervised learning infeasible. To this end, we design a lightweight selector employing Proximal Policy Optimization for efficient decision-making. Furthermore, we introduce a novel "Result-to-Go" training mechanism that models ViTs' inference process as a Markov decision process, significantly reducing action space and mitigating delayed-reward issues during training. Extensive experiments demonstrate the effectiveness of PRANCE~ in reducing FLOPs by approximately 50\%, retaining only about 10\% of tokens while achieving lossless Top-1 accuracy. Additionally, our framework is shown to be compatible with various token optimization techniques such as pruning, merging, and sequential pruning-merging strategies. The code is available at \href{https://github.com/ChildTang/PRANCE}{https://github.com/ChildTang/PRANCE}.
- Abstract(参考訳): 本稿では,アクティベートチャネルを協調的に最適化し,入力の特性に基づいてトークンを削減するビジョントランスフォーマー圧縮フレームワークであるPRANCEを紹介する。
具体的には、ある計算予算に対して適応的なトークン最適化戦略を活用し、統一されたデータとアーキテクチャの観点からViTの推論を加速することを目的としている。
しかし、この共同フレームワークはアーキテクチャ面と意思決定面の両方に課題をもたらす。
第一に、ViTは本質的に変数トークン推論をサポートしているが、変数チャネルの動的計算は容易ではない。
この制限を克服するため,多層自己認識層と多層パーセプトロン層の任意のチャネルをサポートするために,重み付け技術を用いたメタネットワークを提案する。
第二に、メタネットワークと入力データの構造を同時に最適化することは、非常に大きな決定空間を持つ組合せ最適化問題を構成する。
そこで我々は,効率的な意思決定のために,近似ポリシー最適化を用いた軽量セレクタを設計する。
さらに,ViTの推論プロセスをマルコフ決定プロセスとしてモデル化し,動作空間を著しく削減し,トレーニング中の遅延リワード問題を緩和する,新たな「結果対ゴー」トレーニング機構を導入する。
広範囲にわたる実験は、FLOPを約50%減らし、トークンの約10倍しか保持せず、損失のないTop-1の精度を達成できるPRANCE~の有効性を実証している。
さらに,本フレームワークは,プルーニングやマージング,シーケンシャルプルーニングマージング戦略など,さまざまなトークン最適化手法と互換性があることが示されている。
コードは \href{https://github.com/ChildTang/PRANCE}{https://github.com/ChildTang/PRANCE} で公開されている。
関連論文リスト
- Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference [14.030836300221756]
textbfSparse-Tuningは、画像やビデオの情報冗長性を考慮に入れた新しいPEFTメソッドである。
Sparse-Tuningは各層で処理されるトークンの量を最小限に抑え、計算とメモリのオーバーヘッドを2次的に削減する。
我々のSparse-TuningはGFLOPsを62%-70%に削減し,最先端性能を実現した。
論文 参考訳(メタデータ) (2024-05-23T15:34:53Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Only Train Once: A One-Shot Neural Network Training And Pruning
Framework [31.959625731943675]
構造化プルーニング(Structured pruning)は、リソース制約のあるデバイスにディープニューラルネットワーク(DNN)をデプロイする際に一般的に使用されるテクニックである。
我々は,DNNが競争性能と,OTO(Not-Train-Once)によるFLOPの大幅な削減に敏感なフレームワークを提案する。
OTOには2つのキーが含まれている: (i) DNNのパラメータをゼロ不変群に分割し、出力に影響を与えることなくゼロ群をプルークすることができる; (ii)ゼロ群をプロモートするために、構造化画像最適化アルゴリズムであるHalf-Space Projected (HSPG)を定式化する。
OTOの有効性を示すために、私たちはトレーニングとトレーニングを行います。
論文 参考訳(メタデータ) (2021-07-15T17:15:20Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。