論文の概要: Testing Compositionality
- arxiv url: http://arxiv.org/abs/2407.05028v2
- Date: Tue, 20 May 2025 14:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:51.154008
- Title: Testing Compositionality
- Title(参考訳): 構成性をテストする
- Authors: Gijs van Cuyck, Lars van Arragon, Jan Tretmans,
- Abstract要約: 本稿では,実践において相互受理を利用するための3つの主要なアルゴリズムを提案する。
まず、仕様の相互受容を検証し、有効な実装すべてに対する構成性を証明する。
第2に,特定のブラックボックス実装に対する相互受け入れをチェックする,健全で徹底的なモデルベーステスト手順を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Compositionality supports the manipulation of large systems by working on their components. For model-based testing, this means that large systems can be tested by modelling and testing their components: passing tests for all components implies passing tests for the whole system. In previous work, we defined mutual acceptance for specification models and proved that this property is a sufficient condition for compositionality in model-based testing. In this paper, we present three main algorithms for using mutual acceptance in practice. First, we can verify mutual acceptance on specifications, proving compositionality for all valid implementations. Second, we give a sound and exhaustive model-based testing procedure which checks mutual acceptance on a specific black-box implementation. The result is that testing the correctness of large systems can be decomposed into testing the component implementations for uioco conformance to their specifications, and testing for environmental conformance to the specifications of their environment. Finally, we optimise this procedure further by utilizing the constraints imposed by multiple specifications at the same time. These three algorithms together allow picking the most suitable approach for a given situation, trading in more generalizable results for faster runtime by optimising for a specific context as desired.
- Abstract(参考訳): 構成性は、コンポーネントに取り組むことで、大きなシステムの操作をサポートする。
モデルベースのテストでは、大規模なシステムはコンポーネントをモデル化してテストすることでテストすることができる。
過去の研究では,仕様モデルの相互受容を定義し,この特性がモデルベーステストにおける構成性に十分な条件であることを証明した。
本稿では,実際に相互受理を行うための3つの主要なアルゴリズムを提案する。
まず、仕様の相互受容を検証し、有効な実装すべてに対する構成性を証明する。
第2に,特定のブラックボックス実装に対する相互受け入れをチェックする,健全で徹底的なモデルベーステスト手順を提案する。
その結果, 大規模システムの正しさの検証は, ユオコ仕様に適合するコンポーネント実装の試験, 環境仕様に適合する環境条件の試験に分解できることがわかった。
最後に、複数の仕様が課す制約を同時に活用することにより、この手順をさらに最適化する。
これら3つのアルゴリズムは、与えられた状況に対して最も適したアプローチを選択し、特定のコンテキストを望ましいように最適化することで、より一般化可能な結果とより高速な実行環境でのトレーディングを可能にする。
関連論文リスト
- Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning [59.25951947621526]
本稿では,既存の符号化ベンチマークをスコアとランキングデータセットに変換して,合成検証の有効性を評価する手法を提案する。
我々は4つの新しいベンチマーク(HE-R, HE-R+, MBPP-R, MBPP-R+)を公表し, 標準, 推論, 報酬に基づくLCMを用いて合成検証手法を解析した。
実験の結果, 推論はテストケースの生成を著しく改善し, テストケースのスケーリングによって検証精度が向上することがわかった。
論文 参考訳(メタデータ) (2025-02-19T15:32:11Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - Testing Resource Isolation for System-on-Chip Architectures [0.9176056742068811]
ハードウェアレベルでのリソースアイソレーションの確保は、モノのインターネットにおけるセキュリティ向上に向けた重要なステップである。
リソース分離のためのテスト生成におけるモデリングの側面、すなわち、振る舞いをモデル化し、意図したテストシナリオを表現する。
論文 参考訳(メタデータ) (2024-03-27T16:11:23Z) - Validation of massively-parallel adaptive testing using dynamic control
matching [0.0]
現代のビジネスはしばしば同時に多数のA/B/nテストを実行し、多くのコンテンツバリエーションを同じメッセージにパッケージ化する。
本稿では, 連続試験適応条件下での各種試験の因果効果を解消する手法を提案する。
論文 参考訳(メタデータ) (2023-05-02T11:28:12Z) - A Verification Framework for Component-Based Modeling and Simulation
Putting the pieces together [0.0]
提案する検証フレームワークは,コンポーザビリティを異なるレベルで検証するための方法,テクニック,ツールサポートを提供する。
特に、コンポーザビリティ全体の正しさにおける重要性と、プロセスで生じる困難度から、ダイナミック・セマンティック・コンポータビリティ(Dynamic-Semantic Composability)のレベルに注目します。
論文 参考訳(メタデータ) (2023-01-08T18:53:28Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
コアレゾリューションシステムは2つの主要なタスクに取り組む必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクター・クリティカル・ラーニングに基づく複合ルール・ニューラル・コア参照解決システムを提案する。
論文 参考訳(メタデータ) (2022-12-20T08:55:47Z) - Combining multiple matchers for fingerprint verification: A case study
in biosecure network of excellence [53.598636960435286]
指紋認証のための2つの参照システムは、追加の2つの非参照システムと共にテストされている。
実験結果から, 最適認識戦略は, 栄養素と相関測定の両方が関係していることが示唆された。
論文 参考訳(メタデータ) (2022-12-04T19:49:05Z) - On the Limits of Evaluating Embodied Agent Model Generalization Using
Validation Sets [101.28658250723804]
本稿では,より広い視野を効果的に活用し,次のステップでナビゲーションや操作を行うかを選択するモジュールによるトランスフォーマーモデルの拡張実験を行う。
提案したモジュールは改良され,実際に,一般的なベンチマークデータセットであるALFREDの未確認検証セット上での最先端のパフォーマンスが向上した。
この結果は、機械学習タスクではより広い現象かもしれないが、主にテストスプリットの評価を制限するベンチマークでのみ顕著である、と我々は考えているので強調する。
論文 参考訳(メタデータ) (2022-05-18T23:52:21Z) - fairlib: A Unified Framework for Assessing and Improving Classification
Fairness [66.27822109651757]
Fairlibは、分類の公平さを評価し改善するためのオープンソースのフレームワークである。
我々は、前処理、訓練時間、後処理を含む14のデバイアス化手法を実装した。
組み込まれたメトリクスは、最も一般的に使用されるフェアネス基準をカバーし、フェアネス評価のためにさらに一般化およびカスタマイズすることができる。
論文 参考訳(メタデータ) (2022-05-04T03:50:23Z) - Boost Test-Time Performance with Closed-Loop Inference [85.43516360332646]
そこで本研究では,モデル性能を高めるために,ループ方式でハードクラス化試験サンプルを予測することを提案する。
まず、追加の推論ループを必要とするハードクラス化テストサンプルを識別するためにフィルタリング基準を考案する。
各ハードサンプルに対して、モデルのキャリブレーションを行うために、元の上位$K$予測に基づいて補助学習タスクを構築する。
論文 参考訳(メタデータ) (2022-03-21T10:20:21Z) - Overview of Test Coverage Criteria for Test Case Generation from Finite
State Machines Modelled as Directed Graphs [0.12891210250935145]
テストカバレッジ基準は、システムアンダーテストモデルからテストケースを生成する際に、テストエンジニアにとって不可欠な概念です。
テストカバレッジ基準は、システムがテストされるアクションや組み合わせの数を定義します。
本研究は、有限状態機械の一般的なテストカバレッジ基準をすべて要約し、それらの仮定、等価性、および非互換性について議論した。
論文 参考訳(メタデータ) (2022-03-17T20:30:14Z) - Complete Agent-driven Model-based System Testing for Autonomous Systems [0.0]
複雑な自律輸送システムをテストするための新しいアプローチについて述べる。
検証と検証に関して最も重大な問題のいくつかを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-10-25T01:55:24Z) - Visual Composite Set Detection Using Part-and-Sum Transformers [74.26037922682355]
本稿では,エンドツーエンドのコンポジットセット検出を行うために,PST(Part-and-Sum Detection Transformer)という新しい手法を提案する。
PSTは、カスタムデザインの2段階モデルの結果とほぼ一致しながら、シングルステージモデル間で最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-05-05T16:31:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。