Advancing Algorithmic Approaches to Probabilistic Argumentation under the Constellation Approach
- URL: http://arxiv.org/abs/2407.05058v1
- Date: Sat, 6 Jul 2024 12:08:38 GMT
- Title: Advancing Algorithmic Approaches to Probabilistic Argumentation under the Constellation Approach
- Authors: Andrei Popescu, Johannes P. Wallner,
- Abstract summary: We develop an algorithm for the complex task of computing the probability of a set of arguments being a complete extension.
An experimental evaluation shows promise of our approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning with defeasible and conflicting knowledge in an argumentative form is a key research field in computational argumentation. Reasoning under various forms of uncertainty is both a key feature and a challenging barrier for automated argumentative reasoning. It was shown that argumentative reasoning using probabilities faces in general high computational complexity, in particular for the so-called constellation approach. In this paper, we develop an algorithmic approach to overcome this obstacle. We refine existing complexity results and show that two main reasoning tasks, that of computing the probability of a given set being an extension and an argument being acceptable, diverge in their complexity: the former is #P-complete and the latter is #-dot-NP-complete when considering their underlying counting problems. We present an algorithm for the complex task of computing the probability of a set of arguments being a complete extension by using dynamic programming operating on tree-decompositions. An experimental evaluation shows promise of our approach.
Related papers
- The Computational Complexity of Circuit Discovery for Inner Interpretability [0.30723404270319693]
We study circuit discovery with classical and parameterized computational complexity theory.
Our findings reveal a challenging complexity landscape.
This framework allows us to understand the scope and limits of interpretability queries.
arXiv Detail & Related papers (2024-10-10T15:22:48Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
Argumentation-based systems often lack explainability while supporting decision-making processes.
Counterfactual and semifactual explanations are interpretability techniques.
We show that counterfactual and semifactual queries can be encoded in weak-constrained Argumentation Framework.
arXiv Detail & Related papers (2024-05-07T07:27:27Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
We propose complexity-impacted reasoning score (CIRS) to measure correlation between code and reasoning abilities.
Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity.
Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
arXiv Detail & Related papers (2023-08-29T17:22:39Z) - From Probabilistic Programming to Complexity-based Programming [0.5874142059884521]
The paper presents the main characteristics and a preliminary implementation of a novel computational framework named CompLog.
Inspired by probabilistic programming systems like ProbLog, CompLog builds upon the inferential mechanisms proposed by Simplicity Theory.
The proposed system enables users to compute ex-post and ex-ante measures of unexpectedness of a certain situation.
arXiv Detail & Related papers (2023-07-28T10:11:01Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - The Hardness of Reasoning about Probabilities and Causality [5.190207094732672]
We study languages capable of expressing quantitative probabilistic reasoning and do-calculus reasoning for causal effects.
The main contribution of this work is establishing the exact computational complexity of satisfiability problems.
We introduce a new natural complexity class, named succ$exists$R, which can be viewed as a succinct variant of the well-studied class $exists$R.
arXiv Detail & Related papers (2023-05-16T15:01:22Z) - Exceeding Computational Complexity Trial-and-Error Dynamic Action and
Intelligence [0.0]
Computational complexity is a core theory of computer science, which dictates the degree of difficulty of computation.
In this paper, we try to clarify concepts, and we propose definitions such as unparticularized computing, particularized computing, computing agents, and dynamic search.
We also propose and discuss a framework, i.e., trial-and-error + dynamic search.
arXiv Detail & Related papers (2022-12-22T21:23:27Z) - The Complexity of Adversarially Robust Proper Learning of Halfspaces
with Agnostic Noise [67.27523616312428]
We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent PAC model.
We give a computationally efficient learning algorithm and a nearly matching computational hardness result for this problem.
arXiv Detail & Related papers (2020-07-30T04:18:51Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
We present a novel approach to formulate different notions of causal reasoning, over binary acyclic models, as optimization problems.
We show that both notions are efficiently automated. Using models with more than $8000$ variables, checking is computed in a matter of seconds, with MaxSAT outperforming ILP in many cases.
arXiv Detail & Related papers (2020-06-05T10:56:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.