DMTG: One-Shot Differentiable Multi-Task Grouping
- URL: http://arxiv.org/abs/2407.05082v1
- Date: Sat, 6 Jul 2024 13:54:00 GMT
- Title: DMTG: One-Shot Differentiable Multi-Task Grouping
- Authors: Yuan Gao, Shuguo Jiang, Moran Li, Jin-Gang Yu, Gui-Song Xia,
- Abstract summary: We aim to address Multi-Task Learning (MTL) with a large number of tasks by Multi-Task Grouping (MTG)
We propose to simultaneously identify the best task groups from 2N candidates and train the model weights simultaneously in one-shot, with the high-order task-affinity fully exploited.
- Score: 32.72240053032646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to address Multi-Task Learning (MTL) with a large number of tasks by Multi-Task Grouping (MTG). Given N tasks, we propose to simultaneously identify the best task groups from 2^N candidates and train the model weights simultaneously in one-shot, with the high-order task-affinity fully exploited. This is distinct from the pioneering methods which sequentially identify the groups and train the model weights, where the group identification often relies on heuristics. As a result, our method not only improves the training efficiency, but also mitigates the objective bias introduced by the sequential procedures that potentially lead to a suboptimal solution. Specifically, we formulate MTG as a fully differentiable pruning problem on an adaptive network architecture determined by an underlying Categorical distribution. To categorize N tasks into K groups (represented by K encoder branches), we initially set up KN task heads, where each branch connects to all N task heads to exploit the high-order task-affinity. Then, we gradually prune the KN heads down to N by learning a relaxed differentiable Categorical distribution, ensuring that each task is exclusively and uniquely categorized into only one branch. Extensive experiments on CelebA and Taskonomy datasets with detailed ablations show the promising performance and efficiency of our method. The codes are available at https://github.com/ethanygao/DMTG.
Related papers
- Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - Aux-NAS: Exploiting Auxiliary Labels with Negligibly Extra Inference Cost [73.28626942658022]
We aim at exploiting additional auxiliary labels from an independent (auxiliary) task to boost the primary task performance.
Our method is architecture-based with a flexible asymmetric structure for the primary and auxiliary tasks.
Experiments with six tasks on NYU v2, CityScapes, and Taskonomy datasets using VGG, ResNet, and ViT backbones validate the promising performance.
arXiv Detail & Related papers (2024-05-09T11:50:19Z) - MmAP : Multi-modal Alignment Prompt for Cross-domain Multi-task Learning [29.88567810099265]
Multi-task learning is designed to train multiple correlated tasks simultaneously.
To tackle this challenge, we integrate the decoder-free vision-language model CLIP.
We propose Multi-modal Alignment Prompt (MmAP) for CLIP, which aligns text and visual modalities during fine-tuning process.
arXiv Detail & Related papers (2023-12-14T03:33:02Z) - Multitask Learning Can Improve Worst-Group Outcomes [76.92646345152788]
Multitask learning (MTL) is one such widely used technique.
We propose to modify standard MTL by regularizing the joint multitask representation space.
We find that our regularized MTL approach emphconsistently outperforms JTT on both average and worst-group outcomes.
arXiv Detail & Related papers (2023-12-05T21:38:24Z) - Mitigating Task Interference in Multi-Task Learning via Explicit Task
Routing with Non-Learnable Primitives [19.90788777476128]
Multi-task learning (MTL) seeks to learn a single model to accomplish multiple tasks by leveraging shared information among the tasks.
Existing MTL models have been known to suffer from negative interference among tasks.
We propose ETR-NLP to mitigate task interference through a synergistic combination of non-learnable primitives and explicit task routing.
arXiv Detail & Related papers (2023-08-03T22:34:16Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.